
Einführung in die Computerlinguistik
N -grams and language models

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2020

1 / 20

Motivation

Goals:

Estimate the probability that a given sequence of words occurs
in a speci�c language.
Model the most probable next word for a given sequence of
words.

Jurafsky & Martin (2019), chapter 3, and Chen & Goodman (1999)

2

Motivation

Examples from Jurafsky & Martin (2019)
(1) Please turn your homework . . .
What is a probable continuation? Rather in or over and not
refrigerator.

(2) a. all of a sudden I notice three guys standing on the side-
walk

b. on guys all I of notice sidewalk three a sudden standing
the

Which of the two word orders is be�er?

Language model (LM): Probabilistic model that gives P(w1 . . .wn) and
P(wn|w1 . . .wn−1)

3

Motivation

Examples from Jurafsky & Martin (2019)
(1) Please turn your homework . . .
What is a probable continuation? Rather in or over and not
refrigerator.

(2) a. all of a sudden I notice three guys standing on the side-
walk

b. on guys all I of notice sidewalk three a sudden standing
the

Which of the two word orders is be�er?

Language model (LM): Probabilistic model that gives P(w1 . . .wn) and
P(wn|w1 . . .wn−1)

3

Motivation

Examples from Jurafsky & Martin (2019)
(1) Please turn your homework . . .
What is a probable continuation? Rather in or over and not
refrigerator.

(2) a. all of a sudden I notice three guys standing on the side-
walk

b. on guys all I of notice sidewalk three a sudden standing
the

Which of the two word orders is be�er?

Language model (LM): Probabilistic model that gives P(w1 . . .wn) and
P(wn|w1 . . .wn−1)

3

Motivation

Applications:
Tasks in which we have to identify words in noisy, ambiguous
input: speech recognition, handwriting recognition, . . .
spelling correction

Example
(3) a. their is only one wri�en exam in this class

b. there is only one wri�en exam in this class

machine translation: among a series of di�erent word orders
in the target language, one has to choose the best one.

Example
(4) a. Das Fahrrad wird er heute reparieren.

b. �e bike will he today repair
c. �e bike he will today repair.
d. �e bike he will repair today.

4

Motivation

Applications:
Tasks in which we have to identify words in noisy, ambiguous
input: speech recognition, handwriting recognition, . . .
spelling correction

Example
(3) a. their is only one wri�en exam in this class

b. there is only one wri�en exam in this class

machine translation: among a series of di�erent word orders
in the target language, one has to choose the best one.

Example
(4) a. Das Fahrrad wird er heute reparieren.

b. �e bike will he today repair
c. �e bike he will today repair.
d. �e bike he will repair today.

4

N-grams

Notation: wm
1 = w1 . . .wm.

�estion: How can we compute P(wm
1)?

P(wm
1) = P(w1)P(w2|w1)P(w3|w2

1) . . . P(wm|wm−1
1)

=

m∏
k=1

P(wk|wk−1
1)

But: computing P(wk|wk−1
1) for a large k is not feasible.

Approximation of P(wk|wk−1
1): N-grams, i.e., look at just the n− 1 last

words, P(wk|wk−1
k−n+1).

Special cases:

unigrams: P(wk)

bigrams: P(wk|wk−1)

trigrams: P(wk|wk−2wk−1)

5

N-grams

Notation: wm
1 = w1 . . .wm.

�estion: How can we compute P(wm
1)?

P(wm
1) = P(w1)P(w2|w1)P(w3|w2

1) . . . P(wm|wm−1
1)

=

m∏
k=1

P(wk|wk−1
1)

But: computing P(wk|wk−1
1) for a large k is not feasible.

Approximation of P(wk|wk−1
1): N-grams, i.e., look at just the n− 1 last

words, P(wk|wk−1
k−n+1).

Special cases:

unigrams: P(wk)

bigrams: P(wk|wk−1)

trigrams: P(wk|wk−2wk−1)

5

N-grams

Notation: wm
1 = w1 . . .wm.

�estion: How can we compute P(wm
1)?

P(wm
1) = P(w1)P(w2|w1)P(w3|w2

1) . . . P(wm|wm−1
1)

=

m∏
k=1

P(wk|wk−1
1)

But: computing P(wk|wk−1
1) for a large k is not feasible.

Approximation of P(wk|wk−1
1): N-grams, i.e., look at just the n− 1 last

words, P(wk|wk−1
k−n+1).

Special cases:

unigrams: P(wk)

bigrams: P(wk|wk−1)

trigrams: P(wk|wk−2wk−1)

5

N-grams

With n-grams, we get

1 Probability of a sequence of words:

P(wl
1) ≈

l∏
k=1

P(wk|wk−1
k−n+1)

2 Probability of a next word:

P(wl|wl−1
1) ≈ P(wl|wl−1

l−n+1)

�ese are strong independence assumptions called Markov
assumptions. E.g. with bigrams

Example
P(einfach|die Klausur war nicht) ≈ P(einfach|nicht)

6

Maximum likelihood estimation (MLE)

�estion: How do we estimate the n-gram probabilities?

Maximum likelihood estimation (MLE): Get n-gram counts from a
(large) corpus and normalize so that the values lie between 0 and 1.

P(wk|wk−1
k−n+1) =

C(wk−1
k−n+1wk)

C(wk−1
k−n+1)

In the bigram case, this amounts to

P(wk|wk−1) =
C(wk−1wk)

C(wk−1)

We augment sentences with an initial 〈s〉 and a �nal 〈/s〉

7

Maximum likelihood estimation (MLE)

Example from Jurafsky & Martin (2019)
Training data:

< s > I am Sam < /s >
< s > Sam I am < /s >
< s > I do not like green eggs and ham < /s >

Some bigram probabilities:

P(I|< s >) = 2
3 P(Sam|< s >) = 1

3 P(am|I) = 2
3

P(< /s >|Sam) = 1
2 P(Sam|am) = 1

2 P(do|I) = 1
3

8

Maximum likelihood estimation (MLE)

Practical issues:

In practice, n is mostly between 3 and 5, i.e., we use trigrams,
4-grams or 5-grams.

LM probabilities are always represented as log probabilities. Ad-
vantage: Adding replaces multiplying and numerical under�ow
is avoided.

p1 · p2 · . . . pl = exp(log p1 + log p2 + · · ·+ log pl)

9

Maximum likelihood estimation (MLE)

Reminder: log 1 = 0, log 0 = −∞

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0 log10 x

10

Evaluating language models

�e data is usually separated into

a training set (80% of the data),
a test set (10% of the data),
and sometimes a development set (10% of the data).

�e model is estimated from the training set. Intuitively, the higher
the probability of the test set, the be�er the model.

But: Using probabilities prefers shorter sentences to longer ones,
regardless of the sentence lengths in the training data.

Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. �e lower the
perplexity, the be�er the sentence.

11

Evaluating language models

�e data is usually separated into

a training set (80% of the data),
a test set (10% of the data),
and sometimes a development set (10% of the data).

�e model is estimated from the training set. Intuitively, the higher
the probability of the test set, the be�er the model.

But: Using probabilities prefers shorter sentences to longer ones,
regardless of the sentence lengths in the training data.

Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. �e lower the
perplexity, the be�er the sentence.

11

Evaluating language models

�e data is usually separated into

a training set (80% of the data),
a test set (10% of the data),
and sometimes a development set (10% of the data).

�e model is estimated from the training set. Intuitively, the higher
the probability of the test set, the be�er the model.

But: Using probabilities prefers shorter sentences to longer ones,
regardless of the sentence lengths in the training data.

Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. �e lower the
perplexity, the be�er the sentence.

11

Evaluating language models

�e data is usually separated into

a training set (80% of the data),
a test set (10% of the data),
and sometimes a development set (10% of the data).

�e model is estimated from the training set. Intuitively, the higher
the probability of the test set, the be�er the model.

But: Using probabilities prefers shorter sentences to longer ones,
regardless of the sentence lengths in the training data.

Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. �e lower the
perplexity, the be�er the sentence.

11

Evaluating language models

�e perplexity of a test set W = w1w2 . . .wN is de�ned as

PP(W) = P(W)−
1
N

= N
√

1
P(W)

= N
√

1
P(w1w2...wN)

=
N

√√√√√ 1
N∏

k=1

P(wk|wk−1
1)

With our n-gram model, we get then for the perplexity:

Perplexity

PP(W) =
N

√√√√√ 1
N∏

k=1

P(wk|wk−1
k−n+1)

12

Evaluating language models

A di�erent way to think about perplexity: it measures the weighted
average branching factor of a language.

Example
L = {a, b, c, d}∗. Frequencies are such that P(a) = P(b) = P(c) =
P(d) = 1

4 (independent from the context).
For any w ∈ L, given this model, we obtain

PP(w) =

|w|

√√√√√ 1
|w|∏
k=1

1
4

= |w|

√
1

1
4
|w| =

|w|√4|w| = 4

�e perplexity of any w ∈ L under this model is 4.

13

Evaluating language models

Example
L = {a, b, c, d}∗. Words in the language contain three times as many
a’s as they contain b’s, c’s or d’s. P(a) = 1

2 and P(b) = P(c) =
P(d) = 1

6 . For any w ∈ L with these frequencies and with |w| = 6n:

PP(w) =
6n

√√√√√ 1
n∏

k=1

1
2 · 2 · 2 · 6 · 6 · 6

=
6n
√
26n ·
√
36n = 2

√
3 = 3.46

Assume that we use the same model but test it on a w with equal
numbers of as, bs, cs and ds, |w| = 4n. �en we get

PP(w) =
4n

√√√√√ 1
n∏

k=1

1
2 · 6 · 6 · 6

=
4n
√
24n · 33n = 2 4n

√
3 3

4 4n = 2 4
√
27 = 4.56

14

Unknown words

Problem: New text can contain
unknown words; or
unseen n-grams.

In these cases, with the algorithm seen so far, we would assign
probability 0 to the entire text. (And we would not be able to compute
perplexity at all.)

Example from (Jurafsky & Martin, 2019)
Words following the bigram denied the in WSJ Treebank 3 with
counts:
denied the allegations 5
denied the speculation 2
denied the rumors 1
denied the report 1

If the test set contains denied the o�er or denied the loan, the model
would estimate its probability as 0.

15

Unknown words

Unknown or out of vocabulary words:

Add a pseudo-word 〈UNK〉 to your vocabulary.
Two ways to train the probabilities concerning 〈UNK〉:

1 Choose a vocabulary V �xed in advance. Any word w /∈ V in
the training set is converted to 〈UNK〉. �en estimate probabili-
ties for 〈UNK〉 as for all other words.

2 Replace the �rst occurrence of every word w in the training set
with 〈UNK〉. �en estimate probabilities for 〈UNK〉 as for all
other words.

16

Smoothing

Unseen n-grams: To avoid probabilities 0, we do smoothing: Take o�
some probability mass from the events seen in training and assign it
to unseen events.

Laplace Smoothing (or add-one smoothing):

Add 1 to the count of all n-grams in the training set before
normalizing into probabilities.
Not so much used for n-grams but for other tasks, for instance
text classi�cation.

For unigrams, if N is the size of the training set and |V | the size
of the vocabulary, we replace
P(w) = C(w)

N with PLaplace(w) =
C(w)+1
N+|V | .

For bigrams, we replace
P(wn|wn−1) =

C(wn−1wn)
C(wn−1)

with PLaplace(wn|wn−1) =
C(wn−1wn)+1
C(wn−1)+|V | .

17

Smoothing

Smoothing methods for n-grams that use the (n− 1)-grams,
(n− 2)-grams etc.:

Backo� : use the trigram if it has been seen, otherwise fall back
to the bigram and, if this has not been seen either, to the uni-
gram.
Interpolation: Use always a weighted combination of the tri-
gram, bigram and unigram probabilities.

Linear interpolation:

P̂(wn|wn−2wn−1) = λ1P(wn|wn−2wn−1) + λ2P(wn|wn−1) + λ3P(wn)

with
∑
i

λi = 1.

18

Smoothing

More sophisticated: each λ is computed conditioned on the context.

P̂(wn|wn−2wn−1) = λ1(wn−2wn−1)P(wn|wn−2wn−1)
+λ2(wn−2wn−1)P(wn|wn−1)
+λ3(wn−2wn−1)P(wn)

In both cases,

the probabilities are �rst estimated from the training corpus,
and the λ parameters are then estimated from separate held-
out data.
�ey are estimated such that they maximize the likelihood of
the held-out data.

19

References

Chen, Stanley F. & Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language 13. 359–394.

Jurafsky, Daniel & James H. Martin. 2019. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Dra� of the 3rd edition. Available here:
https://web.stanford.edu/∼jurafsky/slp3/ed3book.pdf.

20

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

	Motivation
	N-grams
	Maximum likelihood estimation
	Evaluating language models
	Unknown words
	Smoothing
	References

