Deep Learning in NLP: Semester outline

Christian Wurm & Tatiana Bladier

Heinrich-Heine-Universität Düsseldorf Wintersemenster 2018/2019

Expectations from the course

You will be able to:

- * understand neural network models,
- \star build neural network models using Python,
- \star solve some NLP problems using deep learning models.

Motivation

- * The knowledge learnt from Deep Neural Network (DNN) models is still largely untapped in the context of NLP.
- * DNNs generalize well on unseen data.
- * They are suitable to deal with outlying, missing, unstructured, and noisy data.
- $\star\,$ Very flexible and can be paired with other techniques.
- \star Outperform linear models in classification and data analysis tasks.

Source: Younes Samih (2017)

What are we going to learn?

★ Deep Learning needs five basic things (Chollet, 2017):

 \rightarrow **Problem or task**: machine translation, sentiment analysis, text classification, part-of-speech tagging, text generation etc. \rightarrow Input data points (**features**): files of people speaking, text files, images etc.

 \rightarrow Examples of the expected outputs (tags or labels): transcripts of sound files, positive/negative, cat/dog/fish etc.

 \rightarrow Suitable **algorithm to train** on those data.

 \rightarrow Way to evaluate how good our algorithm is (distance between the algorithm's output and expected output).

Representation of the data \rightarrow coming next week

- * Deep Learning is all about the **data**
- ★ Find suitable corpora online:
 - $\rightarrow\,$ different data formats (e.g. XML, raw text, HTML-documents, treebank formats etc.)
 - \rightarrow https://toolbox.google.com/datasetsearch
- ★ Build own text corpora.
- * Prepare the data (preprocessing).
- * Provide appropriate representations for the input data.
 - \rightarrow data stored in Numpy arrays = tensors

Deep Learning Frameworks: Keras

- Background information on different DL frameworks (e.g. Caffe, Torch, Pytorch, Keras).
- * Background information on Tensorflow and Theano (backend engines of Keras).
- * Introduction to Keras.
- * First deep learning project (predicting Boston housing prices).

Deep Learning tasks for NLP: Neural Architectures

Basic architecture types:

- * Recurrent neural networks.
- * Convolutional and pooling.
- * Recursive neural networks.

Deep Learning tasks for NLP: Neural Architectures

- ★ Document classification
 - \rightarrow identify the topic of an article or the author of a book.
- * Similarity comparisons
 - \rightarrow how closely related are two documents?
- * Sequence-to-sequence learning
 - \rightarrow decoding an English sentence into French.
- \star Sentiment analysis

 \rightarrow classify the sentiment of tweets or movie reviews as positive or negative.

- ★ Image captioning
 - \rightarrow Find a suitable caption for a picture.
- ★ Text generation.

Software

- * Python Version: Python 3.
- * SciPy: NumPy, Pandas, and scikit-learn.
- * Keras: Keras version 2, either a Theano or TensorFlow backend.
- Jupyter notebook or IPython notebook (not necessary, a text editor + command line or your preferred IDE will do as well).
- * Operating System: Windows, Linux or Mac OS X.
- * Hardware: A standard modern workstation, no GPUs (graphics processing unit) required.

Open questions

- Do these representations correspond in any interpretable way to linguistically motivated representations typically used in theoretical linguistics?
- * What are the criteria that make one representation better than another?

Source: Younes Samih (2017)

References I

Chollet, F. (2017). Deep Learning with Python. Manning Publications.