
Formal Languages in Theory and Practice — day 4
Complexity of Natural Languages

Mildly-context sensitivity
T1 languages

Wiebke Petersen & Kata Balogh

(Heinrich-Heine-Universität Düsseldorf)

ESSLLI 2019
University of Latvia, Riga

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 1 / 41

Outline

1 Context-free languages

2 Pumping lemma for CF languages

3 NL and the CF language class

4 Context sensitive languages

5 NL Complexity

6 Turing machine

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 2 / 41

Chomsky Normal Form

De�nition
A grammar is in Chomsky Normal Form (CNF) if all production rules are of
the form

A→ a or A→ BC

where A,B,C ∈ T and a ∈ Σ (and if necessary S → ε in which case S may not
occur in any right-hand side of a rule).

Proposition
No node in a derivation tree of a grammar in CNF has more than two
daughters.

Proposition
Each context-free language is generated by a grammar in CNF.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 3 / 41

Chomsky Normal Form

Each context-free language is generated by a grammar in CNF.
given a context-free grammar GCF with ε 6∈ L(GCF)

create an equivalent grammar GCNF in CNF in 3 steps:
1 Eliminate complex terminal rules.
2 Eliminate chain rules.
3 Eliminate A→ B1B2 . . .Bn (n > 2) rules.

GCF :
S→ ABA | B
A→ aA | C | a
B→ bB | b
C→ A

GCNF :
S→ AZ | YB | b
A→ XA | a
B→ YB | b
X→ a
Y→ b
Z→ BA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 4 / 41

CNF: eliminate complex terminal rules

Aim: Terminals only occur in rules of type A→ a
1 Introduce a new non-terminal Xa for each terminal a occurring in a

complex terminal rule.
2 Replace a by Xa in all complex terminal rules.
3 For each Xa add a rule Xa → a.

S→ ABA | B
A→ aA | C | a
B→ bB | b
C→ A

=⇒

S→ ABA | B
A→ XaA | C | a
B→ XbB | b
C→ A
Xa→ a
Xb → b

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 5 / 41

CNF: eliminate chain rules

Aim: No rules of the form A→ B
For each circle A1 → A2, . . . , Ak−1 → Ak , Ak → A1 replace in all rules
each Ai by a new non-terminal A′ and delete all A′ → A′-rules.
Remove stepwise all rules A→ B and add for each B→ β a rule A→ β

S→ ABA | B
A→ XaA | C | a
B→ XbB | b
C→ A
Xa→ a
Xb → b

=⇒

S→ A′BA′ | B
A′→ XaA′ | a
B→ XbB | b
Xa→ a
Xb → b

=⇒

S→ A′BA′ | XbB | b
A′→ XaA′ | a
B→ XbB | b
Xa→ a
Xb → b

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 6 / 41

CNF: A→ B1B2 . . .Bn (n > 2)

Aim: not more than two non-terminals in one rule’s right-hand side
For each rule of the form A→ B1B2 . . .Bn introduce a new
non-terminal XB2...Bn .
Remove the rule and add two new rules:

I A→ B1XB2...Bn
I XB2...Bn → B2 . . .Bn

S→ A′BA′ | XbB | b
A′→ XaA′ | a
B→ XbB | b
Xa→ a
Xb → b

=⇒

S→ A′XBA′ | XbB | b
A′→ XaA′ | a
B→ XbB | b
Xa→ a
Xb → b
XBA′ → BA′

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 7 / 41

Binary trees

height(T)=3
The height of a tree is the maximal number of edges on a downward path from the root to a
leaf.

Proposition
If T is an arbitrary binary tree with at least 2k leafs, then height(T) ≥ k.

Proof by induction on k. The proposition is true for k = 0. Given the proposition is true for
some �xed k, let T be a tree with ≥ 2k+1 leafs. T has two subtrees of which at least one has
2k leafs and thus a height ≥ k. It follows that the height of T is ≥ k + 1.

Corollary
If a context-free grammar is in CNF, then the height of a derivation tree of a word of length
≥ 2k is greater than k (note that the last derivation step is always a unary one).

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 8 / 41

Pumping lemma for context-free languages

Lemma (Pumping Lemma)
For each context-free language L there exists a n ∈ N such that for any z ∈ L:
if |z| ≥ n, then z may be written as z = uvwxy with

u, v,w, x, y ∈ T∗,

|vwx| ≤ n,

vx 6= ε and

uviwxiy ∈ L for any i ≥ 0.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 9 / 41

Pumping lemma: proof sketch
Let (N , T , S, R) be a context-free grammar in CNF generating L. Let k = |N | and n = 2k . Be
z ∈ L with |z| ≥ n.

Take a maximal path in the binary part of the derivation tree of z. Because of |z| ≥ 2k the
length of the path is ≥ k.

At least one non-terminal symbol occurs twice on the path.
Starting from the bottom of the path, let A be the �rst non-terminal occurring twice.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 10 / 41

Pumping Lemma: proof sketch

|vwx| ≤ n = 2k (A is chosen such that no non-terminal occurs twice in the
trees spanned by the upper of the two A’s⇒ height of tree spanned by
upper A ≤ k⇒ width of tree spanned by upper A ≤ 2k)

vx 6= ε (a binary rule A→ BC must have been applied to the upper A)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 11 / 41

Pumping Lemma: proof sketch

uviwx iy ∈ L for any i ≥ 0.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 12 / 41

Pumping Lemma: application

The language L(akbmckdm) is not context-free

Assume that L(akbmckdm) is context-free then there is a n ∈ N as
speci�ed by the Pumping Lemma.
Choose z = anbncndn, and z = uvwxy in accordance with the Pumping
Lemma.
Because of vwx ≤ n the string vwx consists either of only a’s, of a and
b’s, only of b’s, of b and c’s, only of c’s,. . . .
It follows that the pumped word uv2wx2y cannot be in L.
That contradicts the assumption that L is context-free.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 13 / 41

Closure properties of context-free languages

Type3 Type2 Type1 Type0
union + + + +
intersection + - + +
complement + - + -
concatenation + + + +
Kleene’s star + + + +
homomorphism + + + +
intersection with a regular language + + + +

union: G = (N1] N2 ∪ {S}, T1 ∪ T2, S, P) with
P = P1 ∪] P2 ∪ {S → S1, S → S2}

concatenation: G = (N1] N2 ∪ {S}, T1 ∪ T2, S, P) with P = P1 ∪] P2 ∪ {S → S1S2}

Kleene’s star: G = (N1 ∪ {S}, T1, S, P) with P = P1 ∪ {S → S1S, S → ε}

intersection: L1 = {akb∗ckd∗}, L2 = {a∗bmc∗dm}, but L1 ∩ L2 = {akbmckdm}

complement: de Morgan

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 14 / 41

Closure properties of context-free languages

CFLs are closed under intersection with a regular language.

the proof is based on running a PDA and an FSA parallel

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 15 / 41

Are natural languages context-free?

a long time debate about the context-freeness of natural languages
Chomsky (1957) : “Of course there are languages (in our general sense) that cannot
be described in terms of phrase structure, but I do not know whether or not English is
itself literally outside the range of such analysis.”

several wrong arguments, e.g.:
Bresnan (1987): : “in many cases the number of a verb agrees with that of a noun
phrase at some distance from it ... this type of syntactic dependency can extend as
memory or patience permits ... the distant type of agreement ... cannot be adequately
described even by context-sensitive phrase-structure rules, for the possible context is
not correctly describable as a �nite string of phrases."

right proof techniques: pumping lemma and closure properties
a non context-free phenomenon: cross-serial dependencies in
Schwyzerdütsch (Schieber 1985)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 16 / 41

Are natural languages context-free?

German: nested dependency (subordinate clauses)

(1) ...,
....

daßer
that

die
he

Kinder
the

dem
children

Hans
the

das
Hans

Haus
the

streichen
house

helfen
paint

ließ.
help let.

‘.... that he he let the children to help Hans to paint the house.’

n1 n2 n3 v3 v2 v1

Schwyzerdütsch: cross-serial dependency

(2) ...,
...

das
that

mer
we

d’chind
children.acc

em
the

Hans
Hans.dat

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

‘... that we let the children to help Hans to paint the house.’

n1 n2 n3 v1 v2 v3

(3) *mer
we

d’chind
children.acc

de
the

Hans
Hans.acc

es
the

huus
house.acc

lönd
let

hälfe
help

aastriiche.
paint.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 17 / 41

NL not context-free

Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
homomorphism f :

f (Schwyzerdütsch) ∩ wa∗b∗xc∗d∗y = wambnxcmdny
I CF languages are closed under intersection with regular languages
I wa∗b∗xc∗d∗y is regular
I by Pumping Lemma: wambnxcmdny is not context-free

⇒ Schwyzerdütsch is not context-free

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 18 / 41

Dutch cross dependencies

cross dependencies in Dutch

(4) dat
that

Jan
Jan

Piet
Piet

de
the

kinderen
children

zag
saw

helpen
help

zwemmen.
swim

‘that Jan saw Piet helping the children to swim.’

I no case marking→ string can be generated by a CFG
n1 n2 n3 v3 v2 v1

I however the linguistic dependencies are not preserved⇒ structure
(predicate-argument relations)

I weak generative capacity: preserve the string language
I strong generative capacity: preserve the structure

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 19 / 41

Duplication

duplication (in morphology): Bambara (spoken in Mali)
I wulu ‘dog’

wulu-lela ‘dog watcher’
wulu-lela-nyinila ‘dog watcher hunter’
wulu-o-wulu ‘whatever dog’
wulu-lela-o-wulu-lela ‘whatever dog watcher’
wulu-lela-nyinila-o-wulu-lela-nyinila ‘whatever dog watcher hunter’

structure of the form x = yy⇒ not context-free

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 20 / 41

Context-sensitive languages

NL 6∈ CFL (T2)
context-sensitive? (T1)

De�nition
A grammar (N , T , S, R) is Type1 or context-sensitive i� all rules are of the
form:

γAδ → γβδ with γ, δ, β ∈ (N ∪ T)∗,A ∈ N and β 6= ε;

With the exception that S → ε is allowed if S does not occur in any rule’s
right-hand side.

A language generated by a T1 grammar is said to be a context-sensitive or
Type1-language.

γ and δ can be empty, but β cannot be the empty string; β 6= ε (!)
; ‘non-shrinking’ context-sensitive scheme

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 21 / 41

Example: CS grammar

consider the language anbncn

a context-sensitive grammar generating this language is:
I G = (T ,N , S, R) with

T = {a, b, c}
N = {S,A,B,C, T}
R = {S→ ε, S→ T,

T→ aBC, T→ aTBC,
(recursively generating an(BC)n)
CB→ CX, CX→ BX, BX→ BC,
(swapping two non-terminals: CB→ BC)
aB→ ab, bB→ bb, bC→ bc, cC→ cc}
(from anBnCn to anbncn)

I S⇒ T⇒∗ aaaaBCBCBCBC⇒∗ aaaaBCBCBCBC⇒∗ aaaaBBCCBCBC
⇒∗ aaaaBBCBCCBC⇒∗ aaaaBBBBCCCC⇒ aaaabBBBCCCC⇒
aaaabbBBCCCC⇒∗ aaaabbbbCCCC⇒ aaaabbbbcCCC⇒
aaaabbbbccCC⇒∗ aaaabbbbcccc

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 22 / 41

Mildly context sensitive languages

class of NLs is outside of the set of context-free languages
CFGs are not powerful enough to describe all NL phenomena
questions: how much context-sensitivity is required?
for natural languages context-free grammars are just not ‘enough’

(1) {anbncn | n ≥ 0} (multiple agreement)
(2) {anbmcndm | m, n ≥ 0} (cross-serial dependencies)
(3) {ww | w ∈ {a, b}∗} (duplication)

to describe all NL phenomena we need grammars, that are somewhat
richer than CFGs, but more restricted than CSGs
Aravind Joshi (1985): notion of mild context-sensitivity

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 23 / 41

Mildly context sensitive languages

RL ⊂ CFL ⊂ MCSL ⊂ CSL ⊂ RE
RE

CS
MCS

CF

REG (T3)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 24 / 41

Mildly context sensitive languages

De�nition: Mildly context-sensitive language (Joshi, 1985)

1. A set L of languages is mildly context-sensitive i�
a. L contains all context-free languages
b. L can describe cross-serial dependencies: there is an n ≥ 2 such that
{wk | w ∈ (VT)∗} ∈ L for all k ≥ n

c. the languages in L are polynomially parseable, i.e., L ⊂ PTIME
d. the languages in L have the constant growth property

2. A formalism F is mildly context-sensitive i� the set {L | L = L(G) for some
G ∈ F} is mildly context-sensitive.

mildly context-sensitive grammar formalisms
I Linear Indexed Grammars (LIGs)
I Head Grammars (HGs)
I Combinatory Categorial Grammars (CCGs)
I Tree Adjoining Grammars (TAGs)
I Multicomponent TAGs (MCTAGs)
I Linear Context-Free Rewriting Systems (LCFRSs)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 25 / 41

Turing machine

unrestricted grammars generate Type 0 languages
Turing machines recognize Type 0 languages

Alan Turing

(1912 – 1952)

Turing machine: an abstract ‘computer’
“Computing is normally done by writing certain
symbols on paper. We may suppose this paper is
divided into squares like a child’s arithmetic book.
[. . .]
I think that it is agreed that the two-dimensional
character of paper is no essential of computation. I
assume then that the computation is carried out on
one-dimensional paper, i.e. on tape divided into
squares.”

[Alan Turing: On computable numbers with an application to the Entscheidungsproblem. In:

Proceedings of the London Mathematical Society, 2, 1936.]

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 26 / 41

Turing machine

De�nition
A deterministic Turing machine (TM) is a tuple (Q,Σ,Γ, δ, q0,2, F) with:

Q is a �nite, non-empty set of states

Σ ⊂ Γ is the set of the input symbols

Γ is the �nite, non-empty set of the tape symbols

δ : Q × Γ→ Q × Γ× {L, R} is the partial transition function with L for left and R for
right move.

q0 ∈ Q is the initial state

2 ∈ Γ \ Σ is the blank symbol

F ⊆ Q is the set of accepting states

Note: the transition function is partial, i.e. for some state tape-symbol pairs δ(q, a) is
unde�ned.
Proposition: Every non-deterministic TM can be transformed into an equivalent
deterministic TM.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 27 / 41

An image of a Turing machine

. . . 1 1 1 1 1 1 . . .1

Start conventions
The tape of the TM contains the input �nite string. All other tape
positions are �lled by the blank symbol 2.
The (read-write) head of the TM is placed above the left-most input
symbol.
The TM is in the initial state.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 28 / 41

Con�gurations
.1 1 1 1 1 1 1 10 0 0

q3 111q311000111

A con�guration of a TM is a string αqβ, where
α is the string of symbols to the left of the head starting with the
left-most non-blank symbol on the tape
q is the state the TM is in.
β is the rest of the string ending with the right-most non-blank symbol
on the tape.
the read-write head is currently scanning the �rst symbol of β.

αβ must be �nite for any con�guration of a TM as every con�guration of a
TM is reached after a �nite number of steps (i.e., the head can only be moved
a �nite number of positions to the right or to the left from the starting
position).

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 29 / 41

Transitions

.1 1 1 1 1 1 1 10 0 0

q3 0|q4 111q311000111

1 1 1 1 1 1 10 0 0 0

q4 111q311000111⇒ 1110q41000111

1 1 1 1 1 1 10 0 0 0

q40|q5 1110q41000111

1 1 1 1 1 10 0 0 0 0

q5 1110q41000111⇒ 111q500000111

1 1 1 1 1 10 0 0 0 0

q12|q2 q111100000111

1 1 1 1 10 0 0 0 0

q2 q111100000111⇒ q2221100000111

Transitions
δ(q, a) = (q′, b, R|L) speci�es that if the TM is in state q and reads an a
it can change to state q′, write b, and move either one position right (R)
or left (L).
For a right-move transition δ(q, a) = (q′, b, R) we get: αqaβ ⇒ αbq′β.
For a left-move transition δ(q, a) = (q′, b, L) we get: αcqaβ ⇒ αq′cbβ

⇒∗ is used as before for the closure of⇒

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 30 / 41

Language accepted by a TM

Acceptance by �nal state
A turing machine M accepts the language L(M) by �nal state:
L(M) = {w | q0w ⇒∗C, where C is a con�guration with a �nal state}

Acceptance by halting
A turing machine M accepts the language H(M) by halting:
H(M) = {w | q0w ⇒∗C, where C is a con�guration without possible moves}

Equivalence of acceptance by �nite state and by halting

If L = L(M), then there exists a TM M′ with L = H(M′).
(remove all moves from the �nal state)

If L = H(M), then there exists a TM M′′ with L = L(M′′).
(transition to a new �nal state from all pairs for which δ(q, a) is unde�ned).

Turing machines accept the Type0 languages.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 31 / 41

Turing-computable functions

TMs can be seen as acceptors (accepting languages) or as computers
(computing functions).

A partial function f : Σ∗ → Σ∗ is Turing-computable if there exists a TM
(Q,Σ,Γ, δ, q0,2, F) such that:

f (w) = v if and only if q0w ⇒∗ qf v with qf ∈ F .

Church’s thesis
Every e�ective computation can be carried out by a Turing machine.
Everything that is in some intuitive way computable is Turing-computable.

Thus “computable” is equivalent to “Turing-computable”.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 32 / 41

Example: Turing machine for addition

Note: In this and the following example we violate the restriction that the input
string should not contain the blank symbol. Use another symbol to separate the two
number representations and write a new addition and substraction machine (the
machines even become simpler).

Take the following Turing machine:
M = ({q0, q1, q2}, {1}, {1}, q0, δ, {q3})

I states: q0, q1, q2
I alphabet and input alphabet: {1}
I �nal state: q3
I transitions: δ = {(q0, 1)→ (q0, 1, R), (q0,2)→ (q1, 1, R),

(q1, 1)→ (q1, 1, R), (q1,2)→ (q2,2, L),
(q2, 1)→ (q3,2, R)}

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 33 / 41

Example: Turing machine for addition

.1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q0

1 1 1 1 1 1 1 1 1

q0 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q1 1|q1

1 1 1 1 1 1 1 1 1 1

q12|q2

1 1 1 1 1 1 1 1 1 1

q2 2|q3

1 1 1 1 1 1 1 1 1

q3q3

1 2
q0 (q0, 1, R) (q1, 1, R)
q1 (q1, 1, R) (q2,2, L)
q2 (q3,2, R)
q3

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 34 / 41

Turing machine for subtraction

.1 1 1 1 1 1 1 11 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0

1 1 1 1 1

q0 1|q0q0 2|q1

1 1 1

q1 1|q1

1 1 1

q1 1|q1

1 1 1

q1 1|q1

1 1 1

q12|q2

1 1 1 1 1 1 1 0

q20|q3

1 1 1 1 1 1 1 0

q31|q3q31|q3q32|q4q41|q4q41|q4q41|q4q41|q4q41|q4q4 2|q5

1 1 1 1 1 10 0

q5 0|q0q0 1|q0q0 1|q0q0 1|q0q0 1|q0q0 2|q1q1 1|q1q1 1|q1q10|q2q20|q3

1 1 1 1 10 0 0

q31|q3q32|q4q41|q4q41|q4q41|q4q41|q4q4 0|q5q5 0|q0

1 1 1 1 10 0 0 0

q0 1|q0q0 1|q0q0 1|q0q0 2|q1q1 1|q1q1 0|q2q20|q3

1 1 10 0 0 0 0

q32|q4q41|q4q41|q4q40|q4q4 1|q4q4 0|q5

1 10 0 0 0 0 0

q5 1|q0q0 1|q0q0 2|q1q12|q2q2q2

1 2 0
q0 (q0, 1, R) (q1,2, R)
q1 (q1, 1, R) (q2, 0, L) (q2,2, L)
q2 (q3, 0, L)
q3 (q3, 1, L) (q4,2, L)
q4 (q4, 1, L) (q5,2, R) (q5, 0, R)
q5 (q0, 0, R)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 35 / 41

TM extensions

multi-track TMs
If a language L is accepted by a TM with any �nite number of tracks, then there is a TM with
one tape which accepts L.

A multi-track TM consists of a �nite number of tapes, called tracks; the head scans all tapes
at the same position and moves on all tapes in simultaneously (analogue to 1-tape TM with a
tape alphabet of vectors).

multi-tape TMs
If a language L is accepted by a TM with any �nite number of tapes, then there is a TM with
one tape which accepts L.

In a multi-tape TM the head can move independently on all tapes.
A 2-tape TM is simulated by a 4-track TM, where

the 1st track simulates the tape of the 1st TM.

the 2nd track simulates the position of the head of the 1st TM.

the 3rd track simulates the tape of the 2nd TM.

the 4th track simulates the position of the head of the 2nd TM.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 36 / 41

multi-tape TM→ multi-track TM

.1 1 1 10 0 0 0

.1 1 1 1 1 1 10 0 0 0 0 0

1 1 0 0 0 0 1 1
X

1 1 0 0 1 0 1 1 1 0 0 1 0
X

.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 37 / 41

Further extensions and restrictions of TMs

Extension: nondeterministic TMs
If a language L is accepted by a nondeterministic Turing machine, then there
is a deterministic Turing machine which accepts L.

Restrictions of TMs
Push-down automata with two stacks have the same expressive power
as Turing machines.
Turing machines with semi-bounded tapes (the tape only grows into
one direction) have the same expressive power as Turing machines.

Linearly bounded TMs
Turing machines with a bounded tape the length of which is linearly
bounded by the length of the input string are weaker than general Turing
machines. They accept languages of Type 1.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 38 / 41

Enumerations

enumerable
A language L ⊆ Σ∗ is enumerable, if L = ∅ or there exists a total function
f : N→ Σ∗ such that L = {f (n)|n ∈ N}.

recursively enumerable
A language L ⊆ Σ∗ is recursively enumerable, if L = ∅ or there exists a total
computable function f : N→ Σ∗ such that L = {f (n)|n ∈ N}

enumerator
. . . , w14, w13, w12, w11, w10, w9, w8, w7, w6, w5, w4, w3, w2, w1

Proposition
A language is accepted by a Turing machine i� it is recursively enumerable.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 39 / 41

Closure properties of recursively enumerable languages

Recursively enumerable languages are closed under
union (Given two TMs M and M ′. For L(M) ∪ L(M ′) construct a 2-tape
Turing machine which simulates M and M ′ on the two tapes.)
intersection (Similar construction as for union but with L(M) ∩ L(M ′))
concatenation (Given two TMs M and M ′. For L(M) _ L(M ′) construct
a 2-tape nondeterministic TM which guesses the breakpoint of an input
string and then simulates on the �rst tape M on the �rst part of the
string and on the second tape M ′ on the second part.)
Kleene star (Similar to concatenation)

RE is not closed under complement, as we cannot decide whether a running
TM will ever halt.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 40 / 41

Closure properties of formal language classes

Type3 Type2 Type1 Type0
union + + + +
intersection + - + +
complement + - + -
concatenation + + + +
Kleene’s star + + + +
intersection with a regular language + + + +

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 41 / 41

	Context-free languages
	Pumping lemma for CF languages
	

	NL and the CF language class
	

	Context sensitive languages
	

	NL Complexity
	

	Turing machine
	

