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Chomsky-hierarchy: main theorem

regular ⊂ context-free ⊂ context-sensitive ⊂ recursively enumerable

REG ⊂ CF ⊂ CS ⊂ RE

?

RE (T0)

CS (T1)

CF (T2)

REG (T3)
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Recall

alphabet Σ: nonempty, �nite set of symbols

word w: a �nite string x1 . . . xn of symbols; (x1 . . . xn ∈ Σ)

a formal language L is a set of words over an alphabet Σ, i.e. L ⊆ Σ∗

type grammar rules machine idea word problem

RE unrestricted α→ β
Turing
machine undecidable

CS context-
sensitive γAδ → γβδ

linearly
restricted
automaton

exponential

CF context-
free A→ β

pushdown-
automaton cubic

REG right-linear A→ a|aB �nite-state
automaton linear
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Which is the class of natural languages?

Why is the formal complexity of natural languages
interesting?

It gives information about the general structure of natural language
It allows to draw conclusions about the adequacy of grammar
formalisms
It determines a lower bound for the computational complexity of
natural language processing tasks
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Which is the class of natural languages?

Which idealizations about NL are necessary?
1 The family of natural languages exists.
2 Language = set of strings over an alphabet:
3 Natural languages are generated by �nite rule systems (grammars)
4 Each NL consists of an in�nite set of strings
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About the idealizations

The family of natural languages exists:
all natural languages are structurally similar
all natural languages have a similar generative capacity

Arguments:
all NLs serve for the same tasks
children can learn each NL as their native language (within a similar
period of time)

⇒ No evidence for a principal structural di�erence

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 7 / 38



About the idealizations (cont.)

Language = a set of strings over an alphabet:
native speakers have full competence
consistent grammaticality judgements

Arguments:
all mistakes are due to performance not competence
Mathews (1979) counter examples:

I The canoe �oated down the river sank.
I The editor authors the newspaper hired liked laughed.
I The man (that was) thrown down the stairs died.
I The editor (whom) the authors the newspaper hired liked laughed.
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About the idealizations (cont.)

Natural languages are generated by �nite rule systems (grammars):

Arguments:
If a language is in�nite, a �nite set of rules can explain

how a language can be learned
how we understand each others sentences
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About the idealizations (cont.)

Each NL consists of an in�nite set of strings

Arguments:
Recursion in NL:

I John likes Peter
I John likes Peter and Mary
I John likes Peter and Mary and Sue
I John likes Peter and Mary and Sue and Otto and . . .

(Donaudampfschi�skapitänsmützenschirm . . . )
However:

The set of all English sentences that have been used so far and that will
be used in the time of mankind is �nite.
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Right-linear grammars

the class of Type 3 languages can be generated by right-linear
grammars

De�nition
A grammar (N , T , S, R) is Type3 or right-linear i� all rules are of the form:

A→ a or A→ aB with A,B ∈ N , a ∈ T

Additionally, the rule S → ε is allowed i� S does not appear in any right-hand side
of a rule.
A language generated by a right-linear grammar is said to be a right-linear
language or a Type3-language.
[Remember, we write L(G) for the language generated by a grammar G.]

left-linear grammars are de�ned analogously and generate Type 3
languages as well (A→ a or A→ Ba )
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Examples: Right-linear / left-linear grammar

generating the language (aaa∗)

with a right-linear grammar:
R = {S → aA,A→ aA,A→ a}
example derivations:
S ⇒ aA⇒ aa

S ⇒ aA⇒ aaA⇒ aaaA⇒ aaaa

and with a left-linear grammar:
R = {S → Aa,A→ Aa,A→ a}
example derivations:
S ⇒ Aa⇒ aa

S ⇒ Aa⇒ Aaa⇒ Aaaa⇒ aaaa
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Regular expressions

the class of Type 3 languages can be described by regular expressions

The set of regular expressions RegExΣ over an alphabet Σ = {x1, . . . , xn}
is de�ned by:
∅ is a regular expression.
ε is a regular expression.
x1, . . . , xn are regular expressions.
If a and b are regular expressions over Σ then

I (a|b)
I ab
I a?

are regular expressions too.
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Regular expressions

RegEx: semantics
Each regular expression r over an alphabet Σ denotes a formal language
L(r) ⊆ Σ∗.
Regular languages are those formal languages which can be expressed by
a regular expression.
The denotation function L is de�ned inductively:

L(∅) = ∅, L(ε) = {ε}, L(xi) = {xi}
L(r1|r2) = L(r1) ∪ L(r2)

L(r1r2) = L(r1) _ L(r2)

L(r∗) = L(r)∗

‘r+’ is used as a short-hand for ‘r _ r∗’.
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Examples: regular expressions

Find a regular expression which describes the regular language L (be careful:
at least one language is not regular!)

L is the language over the alphabet {a, b} with L = {aa, ε, ab, bb}.
aa|ε|ab|bb
L is the language over the alphabet {a, b} which consists of all words
which start with a nonempty string of a’s followed by any number of
b’s. a+b∗

L is the language over the alphabet {a, b} such that every a has a b
immediately to the right. b∗(ab+)∗

L is the language over the alphabet {a, b} which consists of all words
which contain an even number of a’s. b∗(ab∗a)∗b∗

L is the language of all palindromes over the alphabet {a, b}. not
regular!
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Deterministic �nite-state automaton (detFSA)

the class of Type 3 languages can be accepted (recognized) by
deterministic �nite-state machines (detFSA)
example: detFSA for the language L(a+)

q0start q1
a

a

initial state q0, �nal state q1

transitions from q0 to q1 reading an a, from q1 to q1 reading an a
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Deterministic �nite-state automaton (detFSA)

De�nition
A deterministic �nite-state automaton is a 5-tuple (Q,Σ, δ, q0, F) with:

1 a �nite, nonempty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅
3 a transition function δ : Q × Σ→ Q
4 an initial state q0 ∈ Q and
5 a set of �nal states F ⊆ Q

FSA = ({q0, q1}, {a}, {(q0, a) 7→ q1, (q1, a) 7→ q1}, q0, {q1})

q0start q1
a

a

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 17 / 38



Language accepted by an automaton

De�nition
A situation of a �nite-state automaton (Q,Σ, δ, q0, F) is a triple (x, q, y)
with x, y ∈ Σ∗ and q ∈ Q.
Situation (x, q, y) produces situation (x′, q′, y′) in one step if there exists an
a ∈ Σ such that x′ = xa, y = ay′ and δ(q, a) = q′, we write
(x, q, y) 7→ (x′, q′, y′) [(x, q, y) 7→∗ (x′, q′, y′) as usual].

De�nition
A word w ∈ Σ∗ gets accepted by an automaton (Q,Σ, δ, q0, F) if
(ε, q0,w) 7→∗ (w, qn, ε) with qn ∈ F.
An automaton accepts a language i� it accepts every word of the language. We
write L(A) for the language accepted by an automaton A.
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Example

q0start

q2

q1
a

bb a

a|b
q0start q1

a

b

both automatons accept language L((ab)∗)

in automaton graphs we often omit the trap state (partial transition
function)
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Nondeterministic �nite-state automaton (nondetFSA)

De�nition
A nondeterministic �nite-state automaton is a 5-tuple (Q,Σ,∆, q0, F)
with:

1 a �nite nonempty set of states Q
2 an alphabet Σ with Q ∩ Σ = ∅
3 a transition relation ∆ ⊆ Q × Σ× Q
4 an initial state q0 ∈ Q and
5 a set of �nal states F ⊆ Q

nondetFSA: extensions

an ε-transition ε→ allows to change the state without reading a symbol
a regular-expression transition r→ allows to change the state by
reading in any string s ∈ L(r)
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Equivalence of detFSA and nondetFSA

Theorem of Rabin & Scott
A language L is accepted by a detFSA i� L is accepted by a nondetFSA
(with ε-transitions and/or regular-expression transitions).

Why is it useful to have both notions?
I the detFSAs are conceptually more straightforward
I sometimes easier to construct a nondetFSA
I for some other classes of automata the two subclasses are not equivalent

example:
I L : {an | n is even or dividable by 3} (or L((aa)∗ | (aaa)∗))
I L((aa)∗ | (aaa)∗) is accepted by the automata on the following slides:

regex-FSA, ε-FSA, nondetFSA and detFSA
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Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with regex-FSA

q0start

q1

q2

ε

ε

aa

aaa
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Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with ε-FSA

q0start

q1

q2

q3

q4

q5

ε

ε

a

a

a a

a
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Equivalence of detFSA and nondetFSA

L((aa)∗ | (aaa)∗) with nondetFSA

q0start

q3

q4

q1

q2

q5

a

a

a

a

a

aa
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Equivalence of detFSA and detFSA

L((aa)∗ | (aaa)∗) with detFSA

q0start q4

q5 q1 q6

q2q3a

a

a a

a

aa
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Eliminating ε-transitions

the ε-closure of a state q (denoted as ECL(q)) is the set that contains q
together with all states that can be reached starting at q by following
only ε-transitions
Given an ε-FSA M eliminating ε-transitions produces an nondetFSA M ′

such that L(M ′) = L(M).
The construction of M ′ begins with M as input, and takes 3 steps:

1. Make q an accepting state i� ECL(q) contains an accepting state in M .
2. Add an arc from q to q′ labeled a i� there is an arc labeled a in M from

some state in ECL(q) to q′.
3. Delete all arcs labeled ε.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 26 / 38



Eliminating ε-transitions

q0start

q1

q2

q3

q4

q5

ε

ε

a

a

a a

a

ECL(q0) = {q0, q1, q2}
1. make q0 an accepting (�nal) state

(Make q an accepting state i� ECL(q) contains an accepting state in M .)

2. add the arcs: from q0 to q3 by a and q0 to q4 by a
(Add an arc from q to q′ labeled a i� there is an arc labeled a in M from some state in
ECL(q) to q′.)

3. Delete all arcs labeled ε.
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Eliminating ε-transitions

step 1 – 2. resulting in:

q0start

q2

q4

q3q1

q5

a

a

a

a

a a

a

still non-deterministic FSA
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nondetFSA to detFSA

make the nondetFSA from the previous slide deterministic
remove multiple transitions with the same symbol
idea: each state in detFSA will be a set of states from the nondetFSA

I from q0 we can go with a to q3 and q4
⇒ in the detFSA we have the states {q0} and {q3, q4} with an a transition

{q0}start {q3, q4}
a

I from the states in {q3, q4} we can go with a to q1 and q5
⇒ in the detFSA we add the state {q1, q5} with an a transition from
{q3, q4}

{q0}start {q3, q4} {q1, q5}
a a
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nondetFSA to detFSA
repeat the steps as before, result in in:

{q0}start {q3, q4} {q1, q5} {q3, q2}

{q1, q4}{q3, q5}{q1, q2}

a a a

a

aa

a

make all states �nal, where any of the states in the set were �nal states
in the nondetFSA

{q0}start {q3, q4} {q1, q5} {q3, q2}

{q1, q4}{q3, q5}{q1, q2}

a a a

a

aa

a

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 30 / 38



Theorem of Kleene

Theorem
If L is a formal language, the following statements are equivalent:

L is regular (i.e., describable by a regular expression)

L is right-linear (i.e., generated by a right-linear grammar)

L is FSA-acceptable (i.e., accepted by a �nite state automaton)

Proof idea:
1 every regular language is right-linear
2 every right-linear language is FSA-acceptable
3 every FSA-acceptable language is regular
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Proof: Every regular language is right-linear

Σ = {a1, . . . , an}
1 L(∅) is generated by ({S},Σ, S, {}),

2 L(ε) is generated by ({S},Σ, S, {S → ε}),

3 L(ai) is generated by ({S},Σ, S, {S → ai}),

4 If L(r1), L(r2) are regular languages described by r1, r2 with generating
right-linear grammars (N1, T1, S1, P1), (N2, T2, S2, P2), then L(r1|r2) is
generated by (N1 ] N2, T1 ∪ T2, S, P1 ∪] P2 ∪ {S → S1, S → S2}),

5 L(r1r2) is generated by (N1 ]N2, T1 ∪ T2, S1, P ′1 ∪] P2) (P ′1 is obtained from P1 if
all rules of the form A→ b (b ∈ T ) are replaced by A→ bS2),

6 L(r∗1 ) is generated by (N1,Σ, S, P ′1 ∪ {S → ε, S → S1}) (P ′1 is obtained from P1
if for all rules of the form A→ b (b ∈ T ) we add a rule A→ bS1).
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Proof: Every right-linear language is FSA-acceptable

If G = (N , T , S, R) is a right-linear grammar then the nondetFSA
M = (N ∪ {�nal}, T ,∆, S, F) with

F = {�nal, S} if S → ε ∈ R or else F = {�nal}.
(A, a,B) ∈ ∆, if A→ aB ∈ R and (A, a,�nal) ∈ ∆ if A→ a ∈ R.

accepts L(G) = L(M).

S → aA, S → bB, S → ε, A→ aA, A→ a, B→ bB, B→ b
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Every FSA-acceptable language is regular
Let M = (Q,Σ,∆, q0, F) be a nondetFSA.

1 Construct an equivalent automaton M′ with only one �nal state and no incoming
transitions at the start state: M = (Q ∪ {qs, qf },Σ,∆′, qs, {qf }) with
∆′ = ∆ ∪ {(qs, ε, q0)} ∪ {(qi, ε, qf |qi ∈ F}.

2 For each pair of states (qi, qj) replace all (qi, r1, qj) ∈ ∆′, (qi, r2, qj) ∈ ∆′, . . . by a
single transition (qi, r1|r2| . . . , qj).

qi qj

r1

r2

=⇒ qi qj
r1|r2

3 As long as there is still a state qk 6∈ {qs, qf } eliminate qk by the following rule:

qi qk qj
r1 r2

r0

r3

=⇒ qi qj
r3|r1r∗0 r2

(Be careful, this last rule only illustrates the rough idea. To do it proper, you have to
control the order in which you remove the states.)

4 Finally the automaton consists only of the two states qs and qf and one single
transition (qs, r, qf ) and L(M) = L(r).Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 34 / 38



Example

starting with the FSA: q1start q2

a

a
b

adding ε-transitions: sstart q1

f

q2
ε

ε

a

a
b

eliminating q1:
I s a−−−→ q2
I s ε−−→ f
I q2

a−−−→ f
I q2

b|aa−−−→
q2

sstart

q2

f

a a

b|aa

ε

sstart f
ε|a(b|aa)∗a
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Example

starting with the FSA: q1start q2

a

a
b

adding ε-transitions: sstart q1

f

q2
ε

ε

a

a
b

eliminating q2:

I q1
ab∗a−−−→ q1

sstart q1 f
ε ε

ab∗a

sstart f
(ab∗a)∗
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Intuitive rules for regular languages

L is regular if it is possible to check the membership of a word simply
by reading it symbol by symbol while using only a �nite stack.
Finite-state automatons are too weak for:

I unlimited counting in N (“same number as”);
I recognizing a pattern of arbitrary length (“palindrome”);
I expressions with brackets of arbitrary depth.
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Closure properties of regular languages

A language class is closed under an operation if its application to arbitrary
languages of this class results in a language of this class.

Type3 Type2 Type1 Type0
union + X + + +
intersection + - + +
complement + - + -
concatenation + X + + +
Kleene’s star + X + + +
intersection with a regular language + + + +

complement: construct complementary DFSA

intersection: implied by de Morgan
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