Formal Languages in Theory and Practice — day 2

Regular Languages

Wiebke Petersen & Kata Balogh
(Heinrich-Heine-Universitit Diisseldorf)

ESSLLI 2019
University of Latvia, Riga

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 1/38

Outline

@ NLs as FLs
© right-linear grammars
© regular expressions

© finite-state automata

© Theorem of Kleene

Petersen & B: h (HHU) Formal Languages

ESSLLI 2019

2/38

Chomsky-hierarchy: main theorem

regular C context-free C context-sensitive C recursively enumerable

REG C CF C CS C RE

RE (T0)
CS (T1)

CF (T2)

Petersen & Balogh (HHU) Formal Languages

ESSLLI 2019

3/38

Recall

@ alphabet >: nonempty, finite set of symbols

@ word w: a finite string x; . . . x, of symbols; (x1 ... x, € X)

@ aformal language L is a set of words over an alphabet 3, i.e. L C ¥*

type | grammar rules machine idea word problem
[TTTTT]
. Turin .
RE unrestricted | a — g @—®—@® | undecidable
machine
. [IITT1]
context- linearly
CS .. YA) — 56 | restricted 0@ exponential
sensitive
automaton
I
text hd .
context- shdown- .
CF x A—p pu W @—0—@® | cubic
free automaton
. . finite-state .
REG | right-linear | A — a|aB @—@®—@® | lincar
automaton
Petersen & Formal Languages ESSLLI 2019 4/38

Which is the class of natural languages?

Why is the formal complexity of natural languages
interesting?

o It gives information about the general structure of natural language

o It allows to draw conclusions about the adequacy of grammar
formalisms

o It determines a lower bound for the computational complexity of
natural language processing tasks

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019

5/38

Which is the class of natural languages?

Which idealizations about NL are necessary?
© The family of natural languages exists.
@ Language = set of strings over an alphabet:
© Natural languages are generated by finite rule systems (grammars)

@ Each NL consists of an infinite set of strings

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 6/38

About the idealizations

The family of natural languages exists:

o all natural languages are structurally similar

o all natural languages have a similar generative capacity
Arguments:

o all NLs serve for the same tasks

o children can learn each NL as their native language (within a similar
period of time)

= No evidence for a principal structural difference

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 7/38

About the idealizations (cont.)

Language = a set of strings over an alphabet:
@ native speakers have full competence
e consistent grammaticality judgements
Arguments:

o all mistakes are due to performance not competence

o Mathews (1979) counter examples:

» The canoe floated down the river sank.

» The editor authors the newspaper hired liked laughed.

» The man (that was) thrown down the stairs died.

» The editor (whom) the authors the newspaper hired liked laughed.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019

8/38

About the idealizations (cont.)

Natural languages are generated by finite rule systems (grammars):

Arguments:
If a language is infinite, a finite set of rules can explain

@ how a language can be learned

@ how we understand each others sentences

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019

9/38

About the idealizations (cont.)

Each NL consists of an infinite set of strings

Arguments:
@ Recursion in NL:

» John likes Peter

> John likes Peter and Mary

> John likes Peter and Mary and Sue

> John likes Peter and Mary and Sue and Otto and ...

o (Donaudampfschiffskapitansmiitzenschirm ...)
However:

@ The set of all English sentences that have been used so far and that will
be used in the time of mankind is finite.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 10/38

Right-linear grammars

o the class of Type 3 languages can be generated by right-linear
grammars

Definition
A grammar (N, T, S, R) is Type3 or right-linear iff all rules are of the form:
A—aorA— aBwithA,BE N,ac T

Additionally, the rule S — € is allowed iff S does not appear in any right-hand side
of a rule.

A language generated by a right-linear grammar is said to be a right-linear
language or a Type3-language.

[Remember, we write L(G) for the language generated by a grammar G.]

@ left-linear grammars are defined analogously and generate Type 3
languages as well (A — aor A — Ba)

Petersen & Balogh (HHU)

Formal Languages ESSLLI 2019 11/38

Examples: Right-linear / left-linear grammar

generating the language (aaa®)

with a right-linear grammar:
e R={S—aA,A— aA A — a}
e example derivations:
S = aA = aa
S = aA = aaA = aaaA = aaaa
and with a left-linear grammar:
¢ R={S— Aa, A — Aa, A — a}
o example derivations:
S= Aa= aa
S = Aa = Aaa = Aaaa = aaaa

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 12/38

Regular expressions

o the class of Type 3 languages can be described by regular expressions

The set of regular expressions RegExs; over an alphabet ¥ = {x,...,x,}
is defined by:

o () is a regular expression.

@ ¢ is aregular expression.

® xi,...,X, are regular expressions.

o If a and b are regular expressions over ¥ then
(alb)
ab
a‘k

are regular expressions too.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 13/38

Regular expressions

RegEx: semantics

Each regular expression r over an alphabet 3 denotes a formal language
L(r) C X"

Regular languages are those formal languages which can be expressed by
a regular expression.

The denotation function L is defined inductively:
° L(@) =0, L(¢) = {e}, L(x) = {xi}
L(n|rz) = L(r) U L(r2)
L(nr) = L(n) ~ L(r)
L(r) = L(r)*

is used as a short-hand for ‘r —~ r*’.

cr+9

Petersen & Balogh (HHU)

Formal Languages ESSLLI 2019 14/38

Examples: regular expressions

Find a regular expression which describes the regular language L (be careful:
at least one language is not regular!)
o L is the language over the alphabet {a, b} with L = {aa, ¢, ab, bb}.
aale|ab|bb
o L is the language over the alphabet {a, b} which consists of all words
which start with a nonempty string of a’s followed by any number of
b’s. at b*
o L is the language over the alphabet {a, b} such that every ahasa b
immediately to the right. b*(ab™)*

o L is the language over the alphabet {a, b} which consists of all words
which contain an even number of a’s. b*(ab*a)* b*

e L is the language of all palindromes over the alphabet {a, b}. not
regular!

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 15/38

Deterministic finite-state automaton (detFSA)

o the class of Type 3 languages can be accepted (recognized) by
deterministic finite-state machines (detFSA)

e example: detFSA for the language L(a™)

a

a
()

initial state qo, final state ¢;

transitions from qo to ¢; reading an a, from ¢; to ¢; reading an a

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 16/38

Deterministic finite-state automaton (detFSA)

Definition

A deterministic finite-state automaton is a 5-tuple (Q, 3, 8, qo, F) with:
Q a finite, nonempty set of states Q

an alphabet > with QN'X = ()

a transition function : Q x ¥ — Q

an initial state qy € Q and

(2]
o
(%)
@ aset of final states F C Q

FSA = ({qO’ ql}v {a}v {(q07 a) = q, (Qh a) = ql}a 9o, {ql})

a

a
start @

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 17/38

Language accepted by an automaton

Definition

A situation of a finite-state automaton (Q, ¥, d, qo, F) is a triple (x, q,)
with x,y € ¥* and q € Q.

Situation (x, q, y) produces situation (x',q',y') in one step if there exists an
a € X such that x' = xa, y = ay’ and 6(q, a) = ¢, we write

(x,4:y) = (+', ¢, y) [(x, ¢, y) =" (x', ¢, ¥') as usual].

Definition

A word w € ¥* gets accepted by an automaton (Q, %, 6, qo, F) if

(€, go, w) =™ (w, qu, €) with q, € F.

An automaton accepts a language iff it accepts every word of the language. We
write L(A) for the language accepted by an automaton A.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 18/38

Example

start

e both automatons accept language L((ab)*)

@ in automaton graphs we often omit the trap state (partial transition
function)

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 19/38

Nondeterministic finite-state automaton (nondetFSA)

Definition

A nondeterministic finite-state automaton is a 5-tuple (Q, X, A, qo, F)
with:

@ a finite nonempty set of states Q

Q an alphabet > withQNX = ()

@ atransition relation A C Q x ¥ x Q
Q an initial state gy € Q and

@ a set of final states F C Q

nondetFSA: extensions

@ an e-transition — allows to change the state without reading a symbol

e aregular-expression transition = allows to change the state by
reading in any string s € L(r)

v

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 20/38

Equivalence of detFSA and nondetFSA

Theorem of Rabin & Scott

A language L is accepted by a detFSA iff L is accepted by a nondetFSA
(with e-transitions and/or regular-expression transitions).

e Why is it useful to have both notions?

> the detFSAs are conceptually more straightforward

» sometimes easier to construct a nondetFSA

» for some other classes of automata the two subclasses are not equivalent
e example:

» L:{a"| niseven or dividable by 3} (or L((aa)* | (aaa)*))
» L((aa)* | (aaa)*) is accepted by the automata on the following slides:
regex-FSA, e-FSA, nondetFSA and detFSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 21/38

Equivalence of detFSA and nondetFSA

e L((aa)* | (aaa)*) with regex-FSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 22/38

Equivalence of detFSA and nondetFSA

e L((aa)* | (aaa)*) with e-FSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 23/38

Equivalence of detFSA and nondetFSA

o L((aa)* | (aaa)*) with nondetFSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 24/38

Equivalence of detFSA and detFSA

e L((aa)* | (aaa)*) with detFSA

start @ a

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 25/38

Eliminating e-transitions

o the e-closure of a state q (denoted as ECL(q)) is the set that contains g
together with all states that can be reached starting at g by following
only e-transitions

@ Given an e-FSA M eliminating e-transitions produces an nondetFSA M’
such that L(M") = L(M).
@ The construction of M’ begins with M as input, and takes 3 steps:

1. Make q an accepting state iff ECL(q) contains an accepting state in M.

2. Add an arc from q to ¢ labeled a iff there is an arc labeled a in M from
some state in ECL(q) to ¢'.

3. Delete all arcs labeled .

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 26/38

Eliminating e-transitions

® ECL(qo) = {40, g1, 42}
1. make g an accepting (final) state

2. add the arcs: from gy to g3 by a and ¢, to g4 by a

3. Delete all arcs labeled e.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 27/38

Eliminating e-transitions

o step 1 — 2. resulting in:

o still non-deterministic FSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 28/38

nondetFSA to detFSA

o make the nondetFSA from the previous slide deterministic
e remove multiple transitions with the same symbol

@ idea: each state in detFSA will be a set of states from the nondetFSA

» from gy we can go with a to g; and g4
= in the detFSA we have the states {qo} and {g¢s, g4} with an a transition

a
start @ @

» from the states in {¢3, g4} we can go with a to ¢; and gs
= in the detFSA we add the state {qi, g5} with an a transition from

{q37q4}

a a
start @

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 29/38

nondetFSA to detFSA

o repeat the steps as before, result in in:

o make all states final, where any of the states in the set were final states
in the nondetFSA

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 30/38

Theorem of Kleene

Theorem

If L is a formal language, the following statements are equivalent:
o L isregular (i.e., describable by a regular expression)
o L isright-linear (i.e., generated by a right-linear grammar)

o L is FSA-acceptable (i.e., accepted by a finite state automaton)

Proof idea:
@ every regular language is right-linear
@ every right-linear language is FSA-acceptable
© every FSA-acceptable language is regular

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019

31/38

Proof: Every regular language is right-linear

Y={a,...,a,}
Q L(0) is generated by ({S},%, S, {}).
@ L(e) is generated by ({S}, X, S, {S — €}),
@ L(a;) is generated by ({S}, X%, S,{S — a}),

@ IfL(n), L(r;) are regular languages described by ry, r, with generating
right-linear grammars (Ny, Ty, S, Py), (N, T, Sz, P2), then L(ry|ry) is
generated by (N; WN,, Ty UT,, S,P, Uy P, U{S — 5,5 = S;}),

@ L(nr) is generated by (N; W Ny, T; U T, Sy, P{ Uy P,) (P; is obtained from P; if
all rules of the form A — b (b € T) are replaced by A — bS,),

Q L(ry) is generated by (N;, X, S, P{ U {S — ¢,S — S;}) (P] is obtained from P,
if for all rules of the form A — b (b € T) we add a rule A — bS)).

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 32/38

Proof: Every right-linear language is FSA-acceptable

If G= (N, T,S,R) is a right-linear grammar then the nondetFSA
M = (N U {final}, T, A, S, F) with

o F = {final, S} if S — € € Ror else F = {final}.

o (A,a,B) € Aif A— aB€ Rand (A, a,final) € AifA—a€R
accepts L(G) = L(M).

S—aA,S— bB,S— ¢, A—aA A— a B— bB,B— b

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 33/38

Every FSA-acceptable language is regular

Let M = (Q, X, A, qo, F) be a nondetFSA.
@ Construct an equivalent automaton M’ with only one final state and no incoming
transitions at the start state: M = (QU {qs, ¢}, =, A', g5, {gqr}) with
A'=AU {(gss€,90)} U {(gs, €, qf|qi € F}.
@ For each pair of states (g, q;) replace all (qi, 11, q;) € A', (gi, 12, ¢) € A,...bya

single transition (gi, r1|72| - . ., g;)-
n
()
=
r2

© Aslong as there is still a state gx & {qgs, ¢} eliminate gx by the following rule:

£}
Y .
7‘3‘7‘17‘0 r
r 1#] —
o

(Be careful, this last rule only illustrates the rough idea. To do it proper, you have to
control the order in which you remove the states.)

© Finally the automaton consists only of the two states g, and g and one single
e T/ AL\ T/.\
Formal Languages ESSLLI 2019 34/38

Example

a

O B O =)

a

a
@ adding e-transitions: gyt c ¢ @.@ b
a
o)

@ eliminating ¢;:

a start
S— Q2

s;>f
>qu>f

blaa

> —
q blaa

€la(blaa)*a
start °

h (HHU) Formal Languages ESSLLI 2019 35/38

Example

@ starting with the FSA:

@ adding e-transitions:

@ eliminating g,:
ab*a
G — ¢

ab*a

OnO=0 Oann O
start start

h (HHU) Formal Languages ESSLLI 2019 36/38

Intuitive rules for regular languages

o L isregular if it is possible to check the membership of a word simply
by reading it symbol by symbol while using only a finite stack.
o Finite-state automatons are too weak for:

» unlimited counting in N (“same number as”);
> recognizing a pattern of arbitrary length (“palindrome”);
> expressions with brackets of arbitrary depth.

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 37/38

Closure properties of regular languages

A language class is closed under an operation if its application to arbitrary
languages of this class results in a language of this class.

Type3 | Type2 | Typel | TypeO
union +V + + +
intersection + - + +
complement + - ¥ N
concatenation +V + + +
Kleene’s star +Vv + + +
intersection with a regular language | + + + +

complement: construct complementary DFSA

intersection: implied by de Morgan

Petersen & Balogh (HHU) Formal Languages ESSLLI 2019 38/38

	NLs as FLs
	

	right-linear grammars
	regular expressions
	

	finite-state automata
	

	Theorem of Kleene
	

