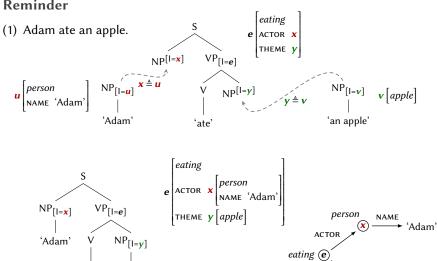
Grammar Implementation with Lexicalized Tree Adjoining Grammars and Frame Semantics Putting things together

Laura Kallmeyer, Timm Lichte, Rainer Osswald & Simon Petitjean

University of Düsseldorf

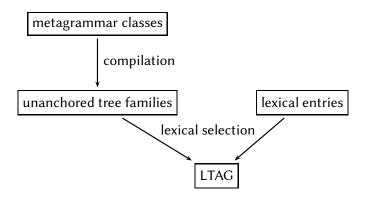
DGfS CL Fall School, September 14, 2017

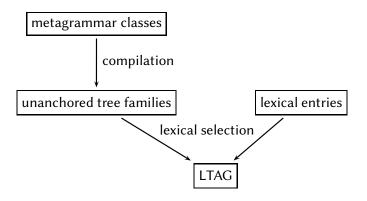

Outline of today's course

- Combining LTAG with frame semantics
 - Overall architecture
 - Elements of the syntax-semantics interface
- Case studies
 - Directed motion construction
 - Dative alternation
- Outlook: factorization of elementary constructions in the metagrammar
- Summary and outlook

Outline of today's course

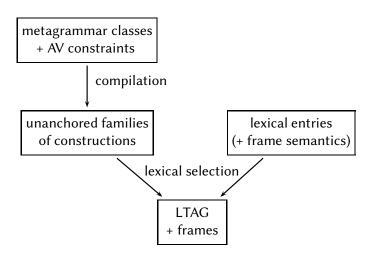
- Combining LTAG with frame semantics
 - Overall architecture
 - Elements of the syntax-semantics interface
- Case studies
 - Directed motion construction
 - Dative alternation
- 3 Outlook: factorization of elementary constructions in the metagrammar
- Summary and outlook


Reminder


'an apple'

THEME

Overall architecture (reminder)



Overall architecture (reminder)

Next step: Add (frame) semantics to all components and link syntax to semantics.

Overall architecture (syntax + semantics)

Elements of the syntax-semantics interface

- **■** Elementary construction:
 - elementary tree
 - + semantic frame
 - + linking of frame node variables to interface features in the tree
- Specification in the metagrammar:
 - classes of tree constraints
 - + sets of attribute-value constraints
 - + linking of variables to interface features

Note: Regularities about **argument linking** are expressed in the metagrammar. [Kallmeyer/Lichte/Osswald/Petitjean 2016]

■ Semantic **composition** ≈ frame unification via identification of interface variables during substitution and adjunction.

Outline of today's course

- Combining LTAG with frame semantics
 - Overall architecture
 - Elements of the syntax-semantics interface
- Case studies
 - Directed motion construction
 - Dative alternation
- Outlook: factorization of elementary constructions in the metagrammar
- Summary and outlook

Intransitive:

- (2) a. Mary walked to the house.
 - b. The ball rolled into the goal.

Intransitive:

- (2) a. Mary walked to the house.
 - b. The ball rolled into the goal.

Transitive:

- (3) a. John threw/kicked the ball into the goal.
 - b. John pushed/pulled the cart to the station.
 - c. John rolled the ball into the hole.

Intransitive:

- (2) a. Mary walked to the house.
 - b. The ball rolled into the goal.

Transitive:

- (3) a. John threw/kicked the ball into the goal.
 - b. John pushed/pulled the cart to the station.
 - c. John rolled the ball into the hole.

Directional specifications are not restricted to **goal** expressions but can also describe the **source** or the **course of the path** in more detail.

Intransitive:

- (2) a. Mary walked to the house.
 - b. The ball rolled into the goal.

Transitive:

- (3) a. John threw/kicked the ball into the goal.
 - b. John pushed/pulled the cart to the station.
 - c. John rolled the ball into the hole.

Directional specifications are not restricted to **goal** expressions but can also describe the **source** or the **course of the path** in more detail. Moreover, path descriptions can be **iterated** to some extent:

- (4) a. John walked through the gate along the fence to the house.
 - b. John threw the ball over the fence into the yard.

Question: Syntactic treatment of directional PPs?

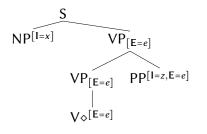
- Construction (~> elementary tree)
- Syntactic composition (adjunction)

Question: Syntactic treatment of directional PPs?

- Construction (~> elementary tree)
- Syntactic composition (~> adjunction)

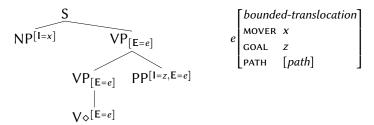
Arguments for treating goal (or **bounded**) PPs constructionally, in contrast to path (or **unbounded**) PPs:

■ Goal PPs cannot be iterated.


Question: Syntactic treatment of directional PPs?

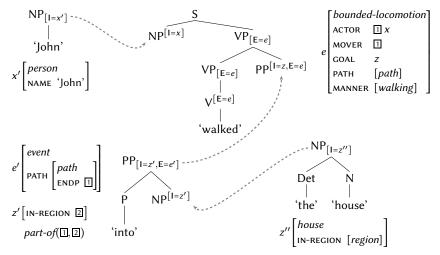
- Construction (~> elementary tree)
- Syntactic composition (~> adjunction)

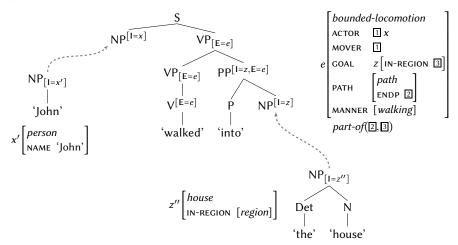
Arguments for treating goal (or **bounded**) PPs constructionally, in contrast to path (or **unbounded**) PPs:

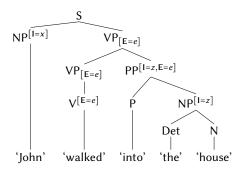

- Goal PPs cannot be iterated.
- They affect the Aktionsart of the expression:
- (5) a. She walked (*in half an hour/for half an hour).
 - b. She walked to the brook (in half an hour/*for half an hour).
 - c. She walked along the brook (*in half an hour/for half an hour).

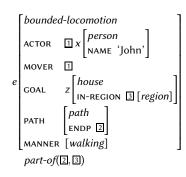
Unanchored construction for intransitive directed motion (n0Vpp(dir)):


```
e bounded-translocation
MOVER X
GOAL Z
PATH [path]
```

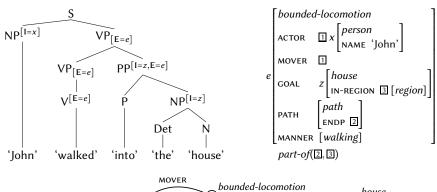

Unanchored construction for intransitive directed motion (n0Vpp(dir)):

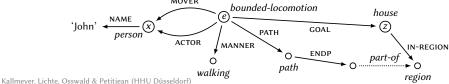

Elementary tree for 'into':

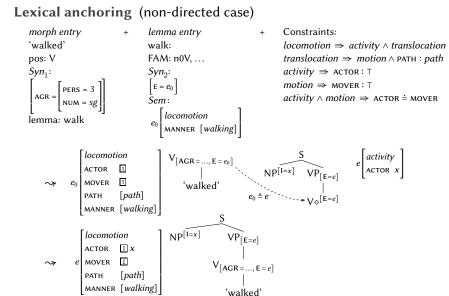

Example (intransitive directed motion)



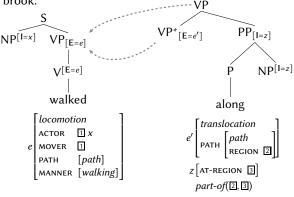
Example (intransitive directed motion)




Example (intransitive directed motion)



Example (intransitive directed motion)



Example

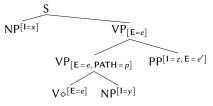
(7) John walked along the brook.

Example

(7) John walked along the brook.

Example

(7) John walked along the brook. $NP^{[I=z]}$ $V^{[E=e]}$ walked along locomotion translocation person ACTOR z AT-REGION 3 locomotion part-of(2,3)MOVER MANNER PATH REGION walking region path region

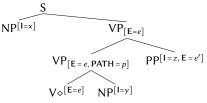

Example (causative directed motion)

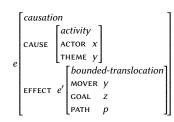
(8) Mary threw/kicked/rolled the ball into the room.

Example (causative directed motion)

(8) Mary threw/kicked/rolled the ball into the room.

Unanchored construction (n0Vn1pp(dir)):




```
e \begin{bmatrix} causation \\ activity \\ ACTOR & x \\ THEME & y \end{bmatrix} \\ EFFECT & e' \begin{bmatrix} bounded-translocation \\ MOVER & y \\ GOAL & z \\ PATH & p \end{bmatrix}
```

Example (causative directed motion)

(8) Mary threw/kicked/rolled the ball into the room.

Unanchored construction (n0Vn1pp(dir)):

(Partial) lexical entry for 'threw':

Case study: dative alternation

Sketch

(9) a. John sent Mary the book.b. John sent the book to Mary.

 $[\rightarrow Kallmeyer/Osswald 2013]$

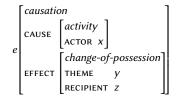
(double object construction) (prepositional object construction)

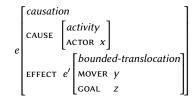
Case study: dative alternation

Sketch

- (9) a. John sent Mary the book.b. John sent the book to Mary.
- a) S $NP^{[I=x]}$ $VP_{[E=e]}$ $V_{\diamondsuit}^{[E=e]}$ $NP^{[I=z]}$ $NP^{[I=y]}$

b)
$$S$$

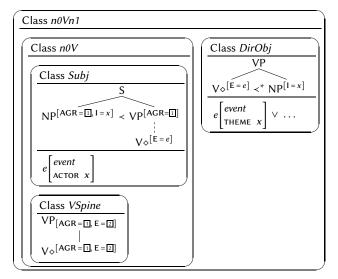

$$NP^{[I=x]} VP_{[E=e]}$$


$$VP_{[E=e]} PP^{[PREP=to, I=z, E=e']}$$

$$V \diamond [E=e] NP^{[I=y]}$$

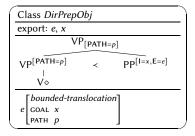
 $[\rightarrow Kallmeyer/Osswald 2013]$

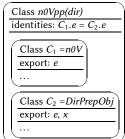
(double object construction) (prepositional object construction)

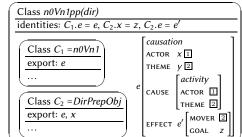


Outline of today's course

- Combining LTAG with frame semantics
 - Overall architecture
 - Elements of the syntax-semantics interface
- Case studies
 - Directed motion construction
 - Dative alternation
- 3 Outlook: factorization of elementary constructions in the metagrammar
- Summary and outlook

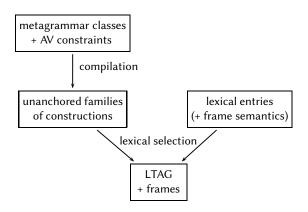

Outlook: Factorization in the metagrammar


Metagrammar classes (syntax + semantics)



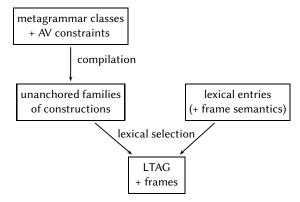
Outlook: factorization in the metagrammar

Metagrammar classes (syntax + semantics)



Outline of today's course

- Combining LTAG with frame semantics
 - Overall architecture
 - Elements of the syntax-semantics interface
- Case studies
 - Directed motion construction
 - Dative alternation
- Outlook: factorization of elementary constructions in the metagrammar
- 4 Summary and outlook


Summary & outlook

Summary

Summary & outlook

Summary

Next week (≠ Tomorrow!)

- Grammar engineering and XMG (eXtensible MetaGrammar)
- Implementing LTAG syntax and frame semantics with XMG
- Parsing implemented grammars with TuLiPA

References

Kallmeyer, Laura, Timm Lichte, Rainer Osswald & Simon Petitjean. 2016. Argument linking in LTAG:
 A constraint-based implementation with XMG. In Proceedings of the 12th International
 Workshop on Tree Adjoining Grammars and related formalisms (TAG+12), 48–57.
 Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized
 Tree Adjoining Grammars. Journal of Language Modelling 1(2). 267–330.