
SFB 991

Syntax-Driven Semantic Frame Composition in
Lexicalized Tree Adjoining Grammars
Laura Kallmeyer and Rainer Osswald
Heinrich-Heine-Universität Düsseldorf / Institute of Linguistics and Information Science

Project goals

• Development of a grammar engineering framework that integrates lexical
and constructional semantics and allows a fine-grained factorization into
syntactic and semantic components.

• Method: Combination of Lexical Tree Adjoining Grammar (LTAG) and
decompositional frame semantics.

LTAG and grammatical factorization

Overview
metagrammar

classes
unanchored

tree families

LTAG

lexical entries

lexical anchoring

compilation

Lexicalized Tree Adjoining Grammar (LTAG) (Joshi & Schabes 1997)

• Tree rewriting system (TAG) on elementary trees with two operations:
substitution and adjunction.

Example: Simple TAG derivation by substitution and adjunction

NP

John

S

NP VP

V

lives

VP

VP∗ PP

P NP

in

NP

London

;

S

NP VP

John VP PP

V P NP

lives in London

• Elementary trees are lexically anchored and they can be arbitrarily large
(extended domain of locality).

• Elementary trees can be split into lexical anchors and unanchored trees,
which are organized in tree families that represent subcategorization frames.

Example: Unanchored tree family for transitive verbs

S

NP VP

V⋄ NP

S

NP S

NP VP

ε V⋄ NP

S

NP VP

V⋄ PP

P NP

by

. . .

Metagrammar (Candito 1999, Crabbe & Duchier 2005)

• Constraint-based, factorized description of unanchored elementary trees.

Example Class CanSubj

S

NP VP

V⋄

Class ExtractedSubj

S

NP[WH=yes] S

NP VP

ε V⋄

Class DirObj

VP

V⋄ NP

Class ByObj

VP[VOICE=passive]

V⋄ PP

P NP

by

Class Subj

CanSubj ∨ ExtractedSubj

Class ActV

VP[VOICE=active]

V⋄

Class PassV

VP[VOICE=passive]

V⋄
Class Transitive

((Subj ∧ ActV) ∨ ByObj ∨ PassV) ∧ (DirObj ∨ (Subj ∧ PassV))

Decompositional frame semantics

• Concept centered with inherent structural properties (vs. event logic).

• Much more flexible than traditional decompositional templates.

Example: Decompositional representations of causative break

a. [[x ACT] CAUSE [BECOME [y BROKEN]]] (traditional decompositional template)

b. 


causation

CAUSE

[
activity

EFFECTOR 1

]

EFFECT




change-of-state

RESULT

[
broken-state

PATIENT 2

]






causation

activity change-of-state

broken-state

CAUSE EFFECT

EFFECTOR RESULT

PATIENT

c. ∃e∃e′∃e′′∃s [causation(e) ∧CAUSE(e, e′) ∧ EFFECT(e, e′′) ∧ activity(e′) ∧ EFFECTOR(e′, x)
∧ change-of-state(e′′) ∧ RESULT(e′′, s) ∧ broken-state(s) ∧ PATIENT(s, y)]

Case study: the English dative alternation
(1) a. John sent Mary the book. (double object, DO)

b. John sent the book to Mary. (prepositional object, PO)

Traditional decompositional analysis:

(2) a. [[x ACT] CAUSE [z HAVE y]] (caused possession)

b. [[x ACT] CAUSE [y GO TO z]] (caused motion)

Observation (inter alia, Krifka 2004, Rappaport Hovav & Levin 2008):

• The interpretations of the DO and the PO constructions are sensitive to the lexical
semantics of the verb.

Partial semantic classification of alternating verbs (cf. Beavers 2011)
lexical meaning PO pattern DO pattern

#args result punct. manner motion (3arrive) (3receive)

give 3 receive yes no no receive receive
hand 3 receive yes yes yes receive receive
send 3 leave

3arrive
yes no yes 3arrive 3receive

throw 2 leave yes yes yes 3arrive 3receive
bring 3 arrive no no yes arrive receive

Sketch of lexical and constructional frames

V[S= 0]

sends
0




causation

CAUSE

[
activity

EFFECTOR 1

]

EFFECT



change-of-loc

THEME 2

DESTINATION 3







V[S= 0]

throws
0




causation

CAUSE



throw-activity

EFFECTOR 1

THEME 2




EFFECT

[
change-of-loc

THEME 2

]




V[S= 0]

gives

0




causation

CAUSE

[
activity

EFFECTOR 1

]

EFFECT




change-of-poss

THEME 2

RECIPIENT 3

RESULT



possession

POSSESSOR 3

POSSESSED 2










DO construction

S

NP[I= 1] VP

V⋄[S= 0] NP[I= 3] NP[I= 2]

0




causation

CAUSE 4

[
activity

EFFECTOR 1

]

EFFECT 5



change-of-poss

THEME 2

RECIPIENT 3







PO construction

S

NP[I= 1] VP

V⋄[S= 0] NP[I= 2] VP

VNA PP[I= 3]

ε

0




causation

CAUSE 4

[
activity

EFFECTOR 1

]

EFFECT 5



change-of-loc

THEME 2

DESTINATION 3







Illustration of metagrammatical factorization
Class Transitive

export: p, arg1, arg2
use classes V1 = InTransitive

N2 = DirObj

identities: V1.V = N2.V
p= N2.p
arg1 =V1.arg1
arg2 = N2.x

Class IndirObj

export: x, p
identities: x= 1 , p= 0

syntactic dimension

VP

V⋄[S= 0] NP[I= 1]

V ≺ NP

semantic dimension

0




causation

EFFECT

[
change-of-poss

RECIPIENT 1

]



Class DOConstr

export: p

use classes V1 =Transitive

N3 =IndirObj

identities: p= N3.p
semantic dimension

p




causation

EFFECTOR V1.arg1
THEME V1.arg2

GOAL N3.x

CAUSE

[
activity

EFFECTOR V1.arg1

]

EFFECT

[
change-of-poss

THEME V1.arg2

]




Examples of lexical anchoring

• Process of anchoring the PO construction by throws:

V[S= 7]

throws

7




causation

CAUSE



throw-activity

EFFECTOR 8

THEME 9




EFFECT

[
change-of-loc

THEME 9

]




S

NP[I= 1] VP

V⋄[S= 0] NP[I= 2] VP

VNA PP[I= 3]

ε

0




causation

CAUSE

[
activity

EFFECTOR 1

]

EFFECT



change-of-loc

THEME 2

DESTINATION 3







• Result of anchoring the DO construction by sends:

S

NP[I= 8] VP

V[S= 0] NP[I= 3] NP[I= 2]

sends

0




sending

EFFECTOR 8

THEME 2

GOAL 3

CAUSE

[
activity

EFFECTOR 8

]

EFFECT







change-of-loc

THEME 2

DESTINATION 3


,



change-of-poss

THEME 2

RECIPIENT 3











Ongoing and future work

• Systematic definition of syntactic classes and generation of tree families.

• Larger coverage of constructions and more detailed semantic frames.

• Implementation by means of the XMG und TuLiPA tools.

