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Abstract. We present a flexible approach for extracting hierarchical
classifications from data, which employs the logic of affirmative asser-
tions. The basic observation is that each set of rules induced by the data
canonically determines a classificational hierarchy. We give a character-
ization of how the chosen rule type affects the structure of the induced
hierarchy. Moreover, we show how our approach is related to Formal
Concept Analysis. The framework is then applied to the induction of
hierarchical classifications from an amino acid database. Based on this
example, the pros and cons of several types of hierarchies are discussed
with respect to criteria such as compactness of representation, suitability
for inference tasks, and intelligibility for the human user.

1 Introduction

The logic of affirmative assertions, which has its origins in domain theory and
program semantics [16,1], has proved useful for the study of formal classifica-
tion as well [10,11]. Its close connection with Formal Concept Analysis [4] has
already been observed in [13], where the emphasis was on the classification of
linguistic data; see also [15,14]. In this paper, the framework is illustrated by in-
ducing hierarchical classifications from biochemical data. Another potential area
of application is the generation of ontologies for the Semantic Web.

The key observation underlying our approach is that, first, any set of impli-
cational statements which correctly describe a given classification table uniquely
determines a hierarchical classification of that data, and, second, restrictions on
the form of the statements systematically correspond to structural properties of
the induced classificational hierarchy. For instance, if only atomic attributes are
allowed as premise and conclusion, then the resulting hierarchy is a distributive
lattice. Viewed from another perspective, our approach helps to clarify the re-
lation between a theory and its information domain [2], where the latter is the
ordered universe of admissible combinations of atomic attributes.
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The rest of the paper is organized as follows: In Section 2, each theory con-
sisting of universally quantified Boolean predicates is shown to determine an
information domain. In addition, it is shown how the information domain of a
theory depends on the class the theory belongs to. This result is used in Section
3 for inducing different types of conceptual hierarchies from classification tables.
In the case of A-free Horn theories, the induced hierarchies essentially coincide
with the concept lattices of Formal Concept Analysis.! In Section 4, we give an
illustration of how our framework can be used to generate hierarchical classifi-
cations from biochemical data. We discuss the effects of varying the underlying
theory class. Moreover, we consider the selective addition of disjunctive rules.

2 Theories and Information Domains

2.1 Terms and Theories

Let X' be a set of atomic one-place predicates. The logical framework employed in
the following is a small fragment of first-order predicate logic. We will frequently
make use of a variable-free notation. For instance, if ¢ and 1 are one-place
predicates, then ¢ A v is their logical conjunction. In addition, we introduce two
special one-place predicates V and A that are respectively satisfied by everything
and nothing of the universe of discourse. Moreover, V¢ stands for Va:(¢x), where
¢ is a one-place predicate. Finally, let < and = be two binary term operators
such that ¢ < ¢ and ¢ = ¢ are V(¢ — ¢) and V(¢ <> 1), respectively.

As the attentive reader will notice, we could equally well make use of plain
propositional logic instead. The reason for adopting the predicational viewpoint
is conceptual clarity. For, in classification tasks, we basically have to deal with
ascriptions of certain properties or attributes to certain entities, i.e., with pred-
ications. Furthermore, we are concerned with statements of the sort that every-
thing with property ¢ also has property 1, that is, with universally quantified
conditionals. An additional point in favor of the predicational view is the fact
that every theory consisting of such universal conditionals naturally defines a
universal model of that theory, the elements of whose universe can be regarded
as the “generic entities” classified by the theory (see also [12]).

Definition 1 (Term/Statement/Theory). A Boolean term over X is induc-
tively built by N, V, -, and — from elements of X plus V and A. A Boolean
term is affirmative if it is free of = and —. A universal statement over X is a
statement of the form Yo, with ¢ a Boolean term. A theory I' over X is a set of
universal statements over 3.

Given two theories I" and I'" over X, we say that I" entails I", in symbols,
I' = I, if I" entails I by any sound and complete inference calculus for first-
order predicate logic. The theories I" and I"” are said to be equivalent if they
entail each other.

! The results of Section 2 and 3 are to a large part adapted from [11].
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Definition 2 (Conditional Form). A statement has conditional (or bicondi-
tional) form if it is of the form ¢ < ¢ (or ¢ = ), with ¢ and ¢ affirmative.
A theory over X has conditional (or biconditional) form if its statements are of
this form. The conditional form is normal, if ¢ is purely conjunctive (or V') and
Y is purely disjunctive (or A).2 The conditional normal form is reduced, if ¢
and Y have no atom in common.

Proposition 1. FEvery theory is logically equivalent to a theory in reduced con-
ditional normal form and to one in biconditional form.

Proof. By applying the standard transformations of propositional logic, every
Boolean predicate has an equivalent conjunctive normal form. So every universal
statement is equivalent to a finite set of statements of the form ¢ < ¢, with ¢,y
affirmative. Finally notice that ¢ =< ¢ is equivalent to ¢ = ¢ A .

Definition 3 (Horn/Simple Inheritance/Exclusion). A conditional state-
ment ¢ =< Y is a Horn statement if ¢ and ¥ are free of disjunctions; it is a
simple inheritance statement if ¢ and v are atomic; it is an exclusion statement
if ¥ is A. A Horn theory is a theory consisting of Horn statements, etc.

Remark 1 (Nonredundant Basis). A nonredundant basis of a theory I' is a min-
imal subset of I' that entails I". For finite X, [3] presents a construction of a
nonredundant basis, which generalizes the approach of [6].

Interpretations and models of theories are defined as usual in standard first-
order predicate logic.

Definition 4 (Interpretation/Satisfaction). A (set-valued) interpretation
of X consists of a universe U and an interpretation function M from X to
p(U). The function M uniquely corresponds to a satisfaction relation F from U
to X, with x E p iff v € M(p).

An interpretation M can be inductively extended to all Boolean terms by
M(V)=U, M(A) =@, M(¢ N) = M(¢) N M(¢), M(=¢) = U\ M(¢), etc.

Definition 5 (Truth/Model). A statement V¢ is true with respect to an in-
terpretation if ¢ is satisfied by all elements of the universe. A model of a theory
I' over X' is an interpretation of X with respect to which all statements of I' are
true.

Definition 6 (Specialization). Given an interpretation M of X with universe
U and two elements x and y of U, then x is specialized by y (with respect to
M), in symbols, x s y, if y satisfies every element of X that is satisfied by x.3

The specialization relation C is reflexive and transitive, i.e. a preorder. If
C is antisymmetric and thus a partial ordering, we say that the interpretation
satisfies identity of indiscernibles. It should be noticed that by stressing the
importance of the specialization relation, we distinguish affirmative terms from
Boolean terms in general. For one shows easily by term induction that x C y iff
y satisfies every affirmative term over X that is satisfied by x.

2 Notice that a statement in normal conditional form is essentially one in clausal form.
3 In case M is clear from context, we drop the subscript.
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2.2 Information Domains

We now show how to associate with each theory a canonical model. The ordered
universe of that model, called the information domain of the theory, can be
regarded as a conceptual hierarchy induced by the theory. We give a charac-
terization of how the structure of these hierarchies depends on the type of the
theory, and vice versa.

Definition 7 (Canonical Interpretation/Model). The canonical interpre-
tation of X has universe p(X) and takes each p € X to the set {X C X'|p € X},
that is, X E p iff p € X. Given a theory I' over X, let C(I") be the set of all
X C X which, under the canonical interpretation, satisfy ¢ for every statement
V¢ of I'. The canonical model M(I") of I' takesp € X to {X € C(I')|p € X}.

We call the elements of C(I") the consistently I'-closed subsets of X. Spe-
cialization on C(I") is set inclusion and hence a partial order. Adapting the
terminology of [2], we refer to C(I), partially ordered by specialization, as the
information domain of I

For each interpretation M of X with universe U let €, be the function from
U to p(X) that takes z to {p € X'| x Fpr p}. By definition of specialization,
x Cyiff epr(z) € epm(y). So epr is an order embedding of U into p(X) if M
satisfies identity of indiscernibles. Moreover, it follows by term induction that
x By ¢ iff epr(x) F ¢, Consequently, if M is a model of a theory I' then
en is a homomorphism of models from M to M(I'). The canonical model is
thus the “largest” I'-model satisfying identity of indiscernibles in the sense that
every other such model M is embedded in M (I") via s (see also [12]). Another
consequence is that M (I") is universal in the sense that a statement is true in
M(I) iff it is true in all models of I', i.e., iff it is entailed by I.

Depending on the class of I', the information domain C'(I") can be charac-
terized as a subset system as follows (see [11] for a proof):

Theorem 1. If a theory I' over a finite set X belongs to one of the classes listed
on the left of Table 1 then its information domain C(I") is closed with respect to
the properties listed in the same row on the right. Conversely, if a subset system
U over X has closure properties that are listed in the right column then U is the
information domain of a theory over X of the corresponding class on the left.

Remark 2. The finiteness of X' in Theorem 1 is essential. If X is infinite then, e.g.,
closure with respect to directed union has to be added in the case of Horn the-
ories. Moreover, it should be noted that the information domains of the various
classes of theories can also be characterized order-theoretically. The information
domains of Horn theories, for instance, are precisely the Scott domains. For both
topics see [10,11].

Definition 8 (Canonical Theory). Let C be a class of statements over X and
U a subset system over X. The canonical C-theory I'c(U) associated with U is
the set of all C-statements V¢ such that VX e U (X E ¢).
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Table 1. Relationship between I" and C'(I)

Class of I H Closure properties of C(I")

unrestricted none

Horn nonempty intersection

A-free Horn intersection

simple inheritance intersection + union

exclusion subsets + bounded union

binary exclusion subsets + pairwise bounded union
simple inheritance + exclusion || nonempty intersection 4+ bounded union

Let us say that U is C-definable if U is the information domain of a C-theory
(which is the case, for instance, if C is the class of Horn statements and U is
closed with respect to nonempty intersection). It is easy to see that U is C-
definable just in case U = C(I¢(U)). In general, I'c(U) is the least C-definable
subset system containing U. Consequently, by Theorem 1:

Theorem 2. The information domain of I'c(U) is the closure of U with respect
to the properties of Table 1 that correspond to class C.

3 Induction of Theories from Data

3.1 Complete Theories of Classification Tables

Consider the situation that a certain set U of objects is classified with respect to
a set X of properties (or attributes). In other words, we are given a satisfaction
relation F from U to X, i.e. an interpretation function M from X to p(U). The
triple (U, X, E) is henceforth called a classification table. Given a classification
table one can ask for a theory that explains the data. To make this precise, we
need to fix the type of theory we are interested in. For example, one can ask for
a simple inheritance theory with or without exclusions, a Horn theory with or
without A, or a theory in general.

Definition 9 (Complete Theory). Let C be a class of statements over X and
M an interpretation of X. A C-theory I' is a complete C-theory of M if, first,
every statement of I' is true with respect to M, i.e. M is a model of I', and,
second, I' entails every C-statement that is true in M.

It is an immediate consequence of definitions that a complete C-theory of M
is unique up to equivalence. Moreover, there is a trivial way to get a complete
theory by taking the set I'c s of all C-statements that are true with respect to
M.

Let us explore more closely the relation between a given classification table
and the information domain of its complete C-theory. As shown in Section 2,
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{a7 b? c? d} {a7 b? e}

[alblcld]e]
r1 || X | X X
i) X
X3 X
Ta || X | X|X]| X
X5 X X
T || X | X | X | X
x7 || X X | X

Fig. 1. Classification table and induced specialization order

a classification table, i.e. a satisfaction relation F from U to Y, determines a
specialization relation T on U. Let Uy be the image {ep(x) |z € U} of the
(pre)order-preserving function ey, from U to p(X) that takes z € U to {p €
Y|z Ep}. In general ) is not one-to-one because there is no guarantee of
identity of indiscernibles, i.e. different elements of U may satisfy exactly the
same elements of X. We have Uy ~ U/~, with  ~ y iff eps(z) = epr(y).

Now notice that the canonical C-theory I (Uys) associated with Ups coin-
cides with I'¢ ar, because ep(x) E ¢ iff & E ¢. So we can apply Theorem 2 to
characterize the information domain of a complete C-theory of M. For instance,
if I' is a complete Horn theory of M then C(I") is the closure of Uy, with respect
to nonempty intersection; similarly, if I" is a complete simple inheritance theory
of M then C(I") is the closure of Uy; with respect to intersection and union.

Ezample 1. Let X be {a,b,c,d,e}. Suppose U consists of the seven elements
Z1,%2,...,2T7 which are classified according to the table of Figure 1. In addi-
tion, the figure shows the specialization order on U/~ induced by the given
classification table (where x4 and xg are indiscernible, i.e. x4 ~xg), as well as
the corresponding subset system Uy, over Y. Figure 2 provides an overview of
the information domains of several complete C-theories of M, with varying C.
At the top of the Figure there is the information domain of a complete simple
inheritance theory of M; it is the closure of Uj; with respect to intersection and
union. A (nonredundant) complete simple inheritance theory of M is given by
the statements d < ¢, ¢ < a, e X a, and e =X b. The diagram below the top on the
left depicts the closure of Uy, with respect to intersection of nonempty subsets
and union of bounded subsets. It is the information domain of the extension
of the above simple inheritance theory by the exclusion statement ¢ A e < A.
Addition of the Horn statement b A ¢ < d further weakens the closure properties
of the associated information domain. If the statement b A ¢ < d is added to the
simple inheritance theory before the exclusion statement ¢ Ae < A, the resulting
effect on the respective information domains is as depicted by the right branch
of Figure 2. Finally, adding the statements V <aVband aAb =< cV e leads to
a complete theory of M, whose information domain consequently is Uj;.
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Fig. 2. Information domain of complete C-theory with varying C
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~

I'A-free Horn, M «——— set of attribute implications

o)

information domain concept lattice
(order-reversing)

Fig. 3. Information domain approach vs. Formal Concept Analysis

3.2 Formal Concept Analysis

Formal Concept Analysis ([4]) associates with each classification table (U, X, F)
a (complete) lattice of formal concepts. (In the terminology of Formal Concept
Analysis, a classification table is called a formal context.) A formal concept of
(U, X,E) is a pair (V, X) consisting of a set V' C U of objects (the extent) and
a set X C X of attributes (the intent) such that X is the set of those attributes
that are shared by all objects of V', whereas V' consists of all objects that have
all attributes of X. So (V, X) is a formal concept just in case V*» = X and
X4 =V, where

VP ={peX|VzeV(zEp)} = Hem(z)|z €V},
Xt ={eeU|WpeX@kp)}=N{Mp)|pecX}

and M is the interpretation function associated with the classification table.
Clearly ((V»)<, V™) is a formal concept for each V' C U. Furthermore, every
formal concept is of the form ((V*)<,V*). Within Formal Concept Analysis,
a concept (V7, X1) is said to be a subconcept of a concept (Va, X3), notation:
V1, Xq) < (Va, Xo), iff Vi C Vs or, equivalently, iff X1 O X5. The set of formal
concepts ordered by < forms a complete lattice, the so-called concept lattice.
Notice that the subconcept ordering is reverse to the specialization ordering.

By definition, the set {V> |V C U} of intents is the closure of {ep/(z) |z € U},
i.e. of Uy, with respect to intersection. Hence Theorem 2 gives us the following
characterization:

Theorem 3. There is an order-reversing one-to-one correspondence between the
concept lattice of a (finite) classification table and the information domain of the
complete A-free Horn theory of that table.

The diagram of Figure 3 summarizes the relation between (finite) concept
lattices and information domains of A-free Horn theories. For the rest of the
paper, we take up the convention of Formal Concept Analysis to graphically
depict more special elements below less special ones.

4 Application: Classification of Amino Acids

4.1 Conceptual Hierarchies via Formal Concept Analysis

The automatic induction of hierarchies is desirable both from a practical and
a theoretical point of view. On the one hand, it makes the processing of large
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aliphatic

hydrophobic
aromatic positive

Fig. 4. Venn diagram taken from [7]

amounts of data possible and provides fast results. On the other hand, it is
of theoretical interest to compare an automatically induced classification with
existing descriptions, in order to reveal the assumptions made by the human
expert. Furthermore, an automatically induced hierarchy can guide the human
expert in analyzing new data. To this end, the induced hierarchy should exhibit
as much of the implicitly given information as possible, and the original data
should always be reconstructible from the induced hierarchy.

We discuss these issues by means of an example from an amino acid data
base. Proteins are essentially built from 20 different amino acids that are speci-
fied by the genetic code. The amino acids can be classified by physico-chemical
properties. Often this classification is represented in form of a Venn diagram
(see Figure 4). Table 2 shows a classification table of those nine polar amino
acids which tend to be at the surface of proteins; they are characterized by
17 physico-chemical properties.* It covers the properties: acidic, basic, neutral,
charged, positive, negative, polar, hydrophobic, aliphatic, aromatic, buried, sur-
face, acyclic, cyclic, large, medium, small.? Details about the properties of amino
acids can be found in any introductory book on biochemistry (e.g. [9]).

Classifying the example data with Formal Concept Analysis results in the
concept lattice shown in Figure 5.6 As usual, only the attribute and the ob-
ject concepts are labeled.” The concept lattice represents a monotonic multiple
inheritance hierarchy, where a node inherits all the attributes labeled to its super-
nodes. Notice that conflicting attributes cannot be inherited, since the hierarchy
is constructed on the base of the subset relation of concept intents. Compared
to Venn diagrams, which are frequently used in biochemistry books, the hier-
archical representation by the concept lattice is in our view easier to access for
human beings. Questions like ‘what are the common attributes of two amino

4 See http://www.rrz.uni-hamburg.de/biologie/b_online/d16/16j.htm

5 “Buried”, in contrast to “surface”, classifies amino acids that tend to be buried inside
proteins. The three attributes of size refer to the number of atoms in the molecule.

5 The drawing was done by the software tool “Concept Explorer” written by Sergey
Yevtushenko; see http://www.sourceforge.net/projects/conexp.

" The attribute concept associated with an attribute p is the greatest concept whose
intent contains p and the object concept of an object x is the smallest concept whose
extent contains x.
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Table 2. Classification of several amino acids by their physico-chemical properties

)
S
o < .28
8|22 eS| <] gle g
3 Sl |2 |2 4| 0 |l = | o 2| =
= o | B Sl e 2| = =B IR - =t o - | =
B ~ o = < = s Q= 0 | O <
S| 28| 2|2 |8|2|E|&|S|2|E|2|2|8|glcs
S| 2| 8|88 |lAalalE|lB| 3|22 |8|=|8]|&
Arg:R X X X | X X | X X
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acids?’ can be answered simply by looking at the smallest node above the amino
acids.

Let us focus more closely on the six unlabeled nodes of the example con-
cept lattice. The nodes of an inheritance hierarchy have essentially two roles:
first, they can introduce new information, which will be inherited by subnodes
and second, they “collect” information from their supernodes and transmit it
“bundled up” to their subnodes. Unlabeled nodes are nodes which only perform
information bundling and not information introduction. Nodes that do not bun-
dle up information are necessarily labeled. Altering the hierarchy by varying the
underlying theory which models the data of the classification table changes the
proportion between the information introducing and the information bundling
nodes.

4.2 Varying the Theory Class

Among the different hierarchical representations of a given data set there is none
which is optimal in every respect. Rather, the question is to find the most ap-
propriate representation depending on the task for which the hierarchy is built.
Two criteria must be met by any reasonable representation: it must be complete
and consistent with respect to the data. Furthermore, a good representation is
maximally informative, maximally compact, and avoids redundancies by captur-
ing generalizations. Unfortunately, it is not possible to construct an inheritance
hierarchy which is optimal with respect to each of these criteria.

What does it mean to say that an hierarchical representation is maximally
informative? In principle, every hierarchy which is consistent and complete with
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Fig. 5. Concept lattice corresponding to Table 2

respect to the data is equally informative in the sense that the original clas-
sification table can be reconstructed from the hierarchy. But the information
domain of the complete (unrestricted) theory of the example data consists only
of seven attribute sets which are pairwise incommensurable. They correspond to
the seven elements of the concept lattice of Figure 5 that are immediately above
the bottom element. For the observer the resulting flat hierarchy is less infor-
mative than the concept lattice, although from the viewpoint of the underlying
theories, the Horn theory is a subtheory of the unrestricted one and therefore less
informative. Switching to a less restricted theory class and looking at the rules
gives the possibility to gain extra information. For example, the complete Horn
theory of our example data only expresses that amino acids which are “positive”
(or “negative”) are also “charged”. But it fails to point out the connection that
every amino acid which is “charged” is either “positive” or “negative”.

Since we are interested in the induction of hierarchical representations, we
record that hierarchies differ with regard to the amount of information they
exhibit explicitly. If the hierarchy is designed to be viewed by human beings
it should maximize this amount of information. The compactness of a network
can be measured in several respects, but in what follows we will only look at
the number of nodes. The compactness criterion clearly favors the network of
the unrestricted theory. A good representation avoids redundancy by capturing
generalizations. In the case of the flat information domain of the unrestricted
theory no generalizations are captured and therefore, most attributes have to be
stated more than once (e.g. “charged”). In other words, the unrestricted theory
leads to “overfitting”. In the concept lattice (see Figure 5) all generalizations
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Fig. 6. AOC-poset corresponding to Table 2

are captured and every attribute and every object occurs exactly once; such a
representation is said to be free of redundancy.

Is there any representation that has this desirable property but is more com-
pact than the concept lattice? According to the results of Section 2 and 3, such
a representation is the information domain of an extension of a complete A-free
Horn theory by disjunctive rules that are consistent with respect to the data. Re-
calling the two different roles of nodes in inheritance hierarchies we can dispense
with the six nodes which only bundle up information. This results in the inher-
itance network in Figure 6, which is the partially ordered set of the attribute
and object concepts (AOC-poset).® A theory of the data whose information do-
main coincides with the AOC-poset can be obtained by taking all rules of the
complete A-free Horn theory and by adding for each concept to be pruned from
the concept lattice a rule whose premise is the conjunction of the intent X of
the concept and whose conclusion is the disjunction of the conjunctions of its
subconcept intents minus X. For example, to eliminate the node with intent
{acyclic, neutral} (the unlabeled node on the right of Figure 5), we can add the
rule

acyclic A neutral < small V medium V large,

which is clearly true with respect to Table 2. Then {acyclic, neutral} is not con-
sistently closed with respect to the extended theory and thus not an element of
its information domain. Notice also that by definition the rule does no eliminate
any other nodes.

8 AOC-posets are also known as pruned concept hierarchies [5]. The present terminol-
ogy has been introduced in [15].
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Compared to the concept lattice, the AOC-poset is more compact and also
free of redundancy. But it is not as informative as the concept lattice, since the
information about common attributes is not captured in single nodes anymore.
In the worst case, the AOC-poset has only two levels: the level of the attribute
nodes and the level of the object nodes. This happens if, first, all objects intents
and, second, all attribute extents are pairwise incomparable with respect to
set inclusion. Nevertheless, the AOC-poset is more informative than the flat
hierarchy since it simplifies the access to the information to which objects an
attribute applies and it shows the hierarchical relations between the attributes.

The number of nodes in an AOC-poset is bounded by the sum of the num-
ber of attributes and the number of objects. In realistic data sets the difference
in compactness between AOC-posets and concept lattices can be dramatic. For
instance, take the lexical database CELEX, compiled by the Dutch Center for
Lexical Information, which consists of three large electronic databases and pro-
vides users with detailed English, German and Dutch lexical data. The German
database, which serves us as a test database, holds 51.728 lemmas with 365.530
corresponding word forms. Focusing at the stored derivational information of
German lemmas, the number of nodes in the corresponding concept lattice is
greater than 72.000, whereas the number of nodes in the AOC-poset is less than
4.000. (The underlying classification table consists of 9.567 objects and 2.032
attributes.) Hence, switching to the AOC-poset reduces the memory require-
ments. Moreover, since the AOC-poset is just the partial order of the attribute
and object concepts, there is an efficient construction algorithm. To summa-
rize, compared to concept lattices, AOC-posets provide a very simple method
to induce redundancy-free inheritance hierarchies from huge databases. Infer-
ence tasks, however, are better supported by concept lattices, due to the explicit
representation of shared attributes.

Having discussed the case of adding rules to a complete Horn theory, it
remains to consider the omission of rules. Switching to the complete simple
inheritance theory without exclusions seems to be overdone, because for the
example data of Table 2 the resulting lattice has 100 concepts. Since many
of the attributes of the example are incompatible, it makes sense to take the
complete simple inheritance theory with exclusions instead. The corresponding
hierarchy has 25 elements, witness Figure 7, and is hence less compact than the
concept lattice. The simple inheritance theory is weaker than the one describing
the AOC-poset or the concept lattice; it is thus more likely that a new object
can be inserted without serious changes to the structure of the lattice.”

5 Outlook

A natural task to pursue is to analyze the presented approach from the viewpoint
of machine learning (e.g. [8]). The problem of inducing theories from classifica-

9 In biology, as well as in other sciences, hierarchical classifications are often presented
in form of tazonomic trees. In [13], it is indicated how to “cut out” classification trees
from concept lattices by adding appropriate disjunctive rules.
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Fig. 7. Simple inheritance hierarchy with exclusions

tion tables can be characterized as follows: A given class C of theories constitutes
the hypothesis space H of the learning problem, whereas the version space with
respect to H and M consists of all C-theories with model M. The commitment
to statement type C determines the inductive bias: one can fit the data only as
well as C permits. On the other hand, if C is too expressive, overfitting can occur:
the induced theory explains the given data perfectly but does not allow general-
izations. In addition to such general considerations, it seems worth to spell out
the precise relation to concept learning and inductive logic programming.

A possible application of the presented approach is to allow disjunctive rules
in attribute exploration tasks.!® As discussed in Section 4.2, the problem is
to avoid accepting too many disjunctive rules, since otherwise, in the case of
incommensurable objects the exploration would always end in a flat hierarchy.
One way to prevent this could be to introduce two steps: first, the standard
attribute exploration is performed and second, each concept which is not yet
an attribute or an object concept is tested to determine whether there is any
object in the universe to which exactly the attributes of its intent apply. If so,
the object is added to the context and if not, a disjunctive rule is added which
excludes the concept from the information domain. In an exploration tool the
concept could be tested by presenting the corresponding disjunctive rule (see
Section 4.2) and asking if there is any known counter example.

10 Attribute Exploration allows to determine a typical set of objects given a set of
classifying attributes. An interactive procedure presents implications to the user,
who can either accept them or deny them by giving a counterexample. For more
details see [3].
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Furthermore it would be interesting to explore possible ways to automati-

cally shift from one theory to another, based on parameters like compactness
monitored during incremental construction of the inheritance hierarchy.
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