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Abstract. This paper addresses the infinitary nature of Contextual At-
tribute Logic and contrasts it with finitary attribute logic. Specifically,
we characterize the concept hierarchies, also called information domains,
that arise from various sorts of attribute logics, which includes a char-
acterization of the information domains of finitary Boolean theories as
locally closed subset systems. In passing, we discuss reformulations of
Contextual Attribute Logic in terms of classical logic.

1 Introduction

Contextual Attribute Logic as introduced in [7] allows for infinite conjunction and
disjunction. The infinitary nature of Contextual Logic has been criticized to the
effect that items of knowledge should be finitely representable or at least approx-
imable by finitely representable ones [9, 16]. While this line of thinking is directed
towards imposing certain “approximation properties” on conceptual hierarchies,
the present paper emphasizes the finitary nature of the “logical relationships”
between attributes, if this sort of knowledge is to be held and processed by man
or machine.

The paper consists of two main parts, the first of which, Section 2, reviews
Contextual Attribute Logic, addresses its relation to classical logic, introduces
some useful notations and techniques, and characterizes the relationship between
various types of (infinitary) logics (Boolean, implicational, Horn, etc.) and the
structural properties of the concept hierarchies determined by these logics. In
the second part, Section 3, the focus is on finitary logic. Again, the relationship
between the types of logics and corresponding concept hierarchies is determined.
In particular, we characterize the hierarchies determined by finitary Boolean
theories as the locally closed subset systems, whereas the infinitary case gives
rise to arbitrary subset systems.

2 Contextual Attribute Logic

2.1 Review of Definitions and Facts

This section is essentially adapted from Ganter and Wille [7], with minor nota-
tional modifications and additions. Ganter and Wille introduce Contertual At-
tribute Logic as “a contextual version of the Boolean Logic of Signs and Classes”,



which is based on the notion of a formal context. A formal context (U, X, F)
consists of a set U of (formal) objects, a set X' of (formal) attributes, and an
incidence relation F from U to X. The purpose of Contextual Attribute Logic
is characterized as follows:

The central task of Contextual Attribute Logic is the investigation of the
“logical relationships” between the attributes of formal contexts and, more
generally, between combinations of attributes, such as implications and in-
compatibilities. [...] The logical relationships between formal attributes will
be expressed via their extent. [7, p. 380]

The “combinations of attributes” are negation and (possibly infinite) con-
junction and disjunction. More precisely, the class of (compound) attributes over
X is the smallest class Boo[X] such that X' C By [X], 7¢ € Boo[X] if ¢ € Boo[X],
and AD,\/ @ € Boo[X] if @ C Boo[X]. We write ¢ A for A{¢, ¥} and use a sim-
ilar convention for V. Moreover, we write A for \/ @ and and V for A\ @. Finally,
¢ — ¥ and ¢ < 1 are defined in the usual way as =¢ V¢ and ¢ — Y A — ¢,
respectively.

The extent p< of an atomic attribute p € X' is {x € U| z F p}. The “exten-
sional semantics” of the compound attributes is that of classical logic:

A2)T =Mo" [pe o}, (V)T =U{s7|p e @}, and (=¢)" =U\p~.

It is convenient to extend the incidence relation F to one from U to B [X] in
the obvious way: z F ¢ iff € ¢<. The dual ¢ of a compound attribute ¢ is
obtained by replacing all /\’s with \/’s and all \/’s with A’s, i.e., pd = pifp € X,

AD)! =V{et | pe ), (VO =NA{¢?|ped}, and (-¢)! = ¢

The so-called complementary context of a formal context (U, X', E) is defined as
(U, X, F°), with z EC p iff z ¥ p. Tt is easy to see that z F¢ ¢ iff x ¥ ¢4, which
will be referred to as the principle of duality.

As for the “logical relationships” between (compound) attributes, an at-
tribute ¢ is said to (extensionally) imply an attribute ¢ in a given context if
@< C 99, the attributes ¢ and ¢ are called eztensionally equivalent if they ex-
tensionally imply each other in the context. In case of extensional equivalence (or
implication) in all contexts (with the same attribute set X), Ganter and Wille
speak of global equivalence (or implication).

Global equivalence (and implication) can be checked in the so-called test
context (p(X), X Fs) of X, with PEs piff pe P C X

Proposition 1. Two attributes over X are globally equivalent iff they are ex-
tensionally equivalent in the test context of X.

Observe that P FS ¢ iff (X'\ P) F5 ¢, and thus P Fs ¢ iff (X'\ P) ¥5 ¢9.

An attribute ¢ over X is said to be all-extensional in a context (U, X, F),
or to hold in the context, if < = U. The (infinitary) Boolean attribute logic of
(U, X,E) is the subclass of those elements of B [X] that are all-extensional in



the context. The attribute logic of a formal context is invariant under object-
clarification, i.e., under identification of objects that are indistinguishable by
attributes in that they have the same intent, where the intent > of an object
x € Uis {p € ¥|xEp}. The standard method for object-clarification is to
employ a quotient construction on U. A more concrete representation is to take
the object intents as objects of the object-clarified context: Let us call (U, X', F5),
with U = {z¥ | x € U}, the canonical object-clarification of (U, X, E).

Clause Logic Clauses provide a convenient normal form for theoretical as well
as for practical purposes. A sequent, or clause, over X is an attribute over X' of
the form \/({-p|p € A} U B), with A, B C ¥, which is also written as (4, B).
The sequent is said to be finite if AU B is finite, disjoint if AN B = @&, and
full if AU B = Y. Notice that a sequent (A, B) is (globally) equivalent to the
conditional normal form A\ A — \/ B. Notice further that P C X belongs to the
extent of (A, B) in the test context of X' just in case A Z P or BN P # &.

Proposition 2. Every attribute is globally equivalent to a conjunction of full
disjoint sequents.

One can therefore restrict oneself to the clause logic of a formal context,
which is the set of all sequents that hold in the context. In characterizing clause
sets that arise as clause logics of contexts, Ganter and Wille essentially follow [2,
Chap. 9]. The clause logics are precisely the regular clause sets, where regular
means being closed under certain rules like Weakening and Partitioning. Without
going into details, let us note for further use that the clause logic of a context
is the regular closure of its full sequents. Notice, however, that this fact hinges
on the infinitary nature of the logical language involved here, whereas within
finitary logic over an infinite attribute set, there are no full sequents at all (cf.
Section 3 below).

Free Extents The free extent of a set I" of attributes over X' is the extent of
A I in the test context of X. If I" is a regular clause set then P C X' is an element
of the free extent of I' just in case the sequent (P, X\ P) does not belong to
I'. Suppose now that I" is the clause logic of a formal context (U, X', F). Then
I is also the clause logic of the associated canonical object-clarification, which
means that P C ¥ is an object intent iff (P, X'\ P) is not in I". Consequently:

Proposition 3. The elements of the free extent of the (infinitary) Boolean at-
tribute logic of a formal context are precisely the object intents of that context.

Given a formal context (U, X, E), the intent V> of a set V C U of objects
and the extent P< of a set P C X of attributes are defined as follows:!

VB ={peX|zEpforeveryz eV} = N{z¥ |z €V},
P9 ={zeUl|zEpforevery pe P} = ({pJ|pe€ P}

! Notice that P< = (A P)<.



Then (V, P) is a formal concept if V® = P and P< = V. Moreover, (V®)9,V?)
is a formal concept for each V' C U, and every formal concept is of this form.
By definition, the system {V® |V C U} of concept intents is the closure of the
system of object intents with respect to intersection.

Sequents of the form (A, {p}) are called implications. The (infinitary) impli-
cational attribute logic of a formal context is the class of all implications over X
that hold in the context. The following well-known result says that the formal
concepts of a context are determined by its implicational logic (cf. [8, Sect. 2.3]):

Proposition 4. The elements of the free extent of the (infinitary) implicational
attribute logic of a formal context are precisely the concept intents of that context.

The characterization of the free extent for other restricted logics and a refor-
mulation of Propositions 3 and 4 by means of closure operators will be given in
Section 2.3 below.

2.2 Reformulations within Classical Logic

The terminology introduced in the previous section differs considerably from
that you find in standard textbooks on formal logic. According to Ganter and
Wille this is intended “since the aim of Contextual Logic differs from that of
Mathematical Logic” [7, p. 380]. Nevertheless, they point out that there is a
close connection to propositional logic (see also [6]).

Propositional Logic To get a formulation of Contextual Attribute Logic in
terms of propositional logic one can simply regard the elements of the attribute
set X as atomic propositions (or propositional variables). Then By[X] is the
class of all (possibly infinitary) propositional formulas over X. A (propositional)
theory over X is a set of formulas over Y.

Let 2 be a set {0, 1} of two elements equipped with the standard Boolean op-
erations. A 2-valued (or truth-valued or Boolean) interpretation (or valuation)
of X' is a function m from X to 2; every such interpretation can be uniquely
extended to a function from B [X] to 2 such that m(A @) = A{m(¢)| ¢ € P},
etc. A propositional formula ¢ over X' is called satisfiable if there is an interpre-
tation m of X' such that m(¢) = 1; the interpretation m is then called a satisfier
or model of ¢; m is a model of a theory I" if m is a model of every formula of I".

Due to the one-to-one correspondence between subsets of X' and their charac-
teristic functions, one can identify interpretations of X’ with subsets of X'. Under
this identification, a subset P of X is a model of a formula ¢ iff the characteristic
function of P takes ¢ to 1. The inductive definition of satisfaction then has the
following formulation: P C X satisfies p € X iff p € P, P satisfies A\ @ iff P sat-
isfies ¢ for all ¢ € @, and so on. In other words, P is a 2-valued model of ¢ just
in case P belongs to the extent of ¢ in the test context of Y. Correspondingly,
the free extent of a theory I' is the class of all 2-valued models of I.

The connection of Contextual Attribute Logic to propositional logic proposed
in [7, p. 381] for arbitrary formal contexts (U, X, F) is to regard U as a set of



situations, where = F p indicates that the proposition p is true in the situation
x. Strictly speaking, however, this view transcends plain propositional logic in
that evaluation with respect to certain situations or “worlds” comes into play. A
much more natural view is that of monadic predicate logic, where the elements
of X, the attributes, are predicated of the elements of U, the objects.

Attributes as Predicates The framework of propositional logic adopted in
the foregoing sections has the advantage of familiarity. Moreover, propositional
logic is commonly seen as the most basic sort of logic — witness any textbook
on logic. Conceptually, however, it seems rather awkward to regard attributes
as propositions. If attributes are formalized within a logical language at all then
the most natural way to do so is to represent them as monadic predicates. For
assigning attributes to objects is essentially a predication.

The propositional viewpoint can be replaced by a predicational one without
much effort. The elements of X', the attributes, are now regarded as atomic
(monadic) predicates. We can still apply the Boolean connectives to members
of X' by using a variable-free notation, i.e., (—¢)z means —¢x, (/\ )z means
Aoz | ¢ € ®}, and so on.? In addition, we write V¢ for the universal statement
Va(¢x) and assume theories over X to consist of universal statements of this
form.

Recall the standard definition of an interpretation within the framework of
predicate logic: an interpretation of X' consists of a universe U and a function
that takes each monadic predicate p € X to a subset of U. Now observe that
a formal context (U, X F) uniquely corresponds to an interpretation M of X
and vice versa: simply define M (p) = p< = {x € U| x F p}. The notion of an
interpretation gives us the notion of truth and model as well: a statement V¢ is
true with respect to the interpretation M if M(¢) = U (with M extended to
Boo[X)]); the interpretation M is a model of a theory I' if every statement of I"
is true with respect to M. Instead of saying that a (compound) predicate (or
attribute) ¢ is “all-extensional” in a formal context (cf. Section 2.1) we can now
say that V¢ is true in (the interpretation corresponding to) the context.

Under this perspective, the test context of X provides a canonical interpre-
tation of X. Moreover, if U is the free extent of a theory I' over X, then the
context (U, X, F5) determines a canonical model of I'. Tt is not difficult to see
that this model is the “largest object-clarified” model of I', in the sense that
every other such model is embeddable into it, and that the canonical model is
universal in the sense that a statement is true in that model if it is true in all
models of I

The predicational viewpoint also allows a clear distinction between a back-
ground theory consisting of universal statements on the one hand and assertions
about a specific object on the other. Within Contextual Attribute Logic as pre-
sented in [7], this distinction is only implicit in that compound attributes serve
“not only as “generalized attributes”, but also as logical rules that may or may

2 Formally, this can be realized by predicate abstraction.



Ganter & Wille [7]

Barwise & Seligman [2] H Present paper [10, 12]

formal context

classification

satisfaction relation,
interpretation

test context

powerset classification

canonical interpretation

object-clarified

separated

identity of indiscernibles

consistent set

consistent partition

consistently closed set

free extent

(tokens of) generated
classification

canonical model,
information domain

Boolean attribute logic
of formal context

generated theory
(only clauses)

canonical (Boolean)
theory

Table 1. Comparison of terminologies

not hold in the given context” [7, p. 382]. It is this implicit universal quantifica-
tion of rules that becomes explicit under the present reformulation.

Fixing Terminology and Notation In the rest of this paper, we employ the
following terminological and notational conventions, which more or less resemble
those of [10,12]. Table 1 provides an overview of how these conventions are
related to that of Ganter and Wille and of Barwise and Seligman, respectively.

We take up the predicational view presented above, that is, we speak of the
class Boo[X] of compound predicates over a set X of atomic (monadic) predicates
and of theories as sets of statements that are universally quantified compound
predicates.? Moreover, we speak of interpretations and their associated satisfac-
tion relation, of the canonical interpretation of X', and of the canonical model of
a theory. We use C(I") to refer to the universe of the canonical model of I', that
is, C(I") is the free extent of I'. Adapting the terminology of [5], we call C(I")
the information domain of I'. Notice that two theories over X' are equivalent,
i.e., entail each other (in the sense of having the same models), if and only if
they have identical information domains.

Instead of V(¢ — %) and V(¢ < ) we also write ¢ < ¢ and ¢ = o,
respectively. A (compound) predicate is called positive or affirmative if it is free
of —. A statement of the form ¢ < ¢ (or ¢ = 1), with ¢ and ¢ positive, is said to
have conditional (or biconditional) form. The conditional form is called normal,
if ¢ is purely conjunctive and v is purely disjunctive. A conditional normal form
is thus the same as a clausal form.

3 Notice that we do not require a theory to be closed under entailment.



2.3 Theory Types and Closure Operators

Let us now return to the issue addressed at the close of Section 2.1. In addition
to the general class Boo[X] of Boolean predicates over X, we make use of the
following notations for special types of predicates (with p,qg € ¥ and P,Q C X):

H[X] Horn predicates ANP— A ANP—q(or AN\P— A\Q)
I.[X] implications AP —q (or ANP— AQ)
Ox[X] contradictions AP —A (or =A\P)

S[X] simple implications p — ¢

By an (possibly infinitary) Horn statement or Hs-statement over X we mean a
statement of the form V¢ with ¢ € Hoo[X]. An (infinitary) Horn theory or Ho-
theory is a set of Horn statements. A corresponding terminology is employed for
the other cases.

Recall from Section 2.1 that in order to determine the Boolean attribute logic
of a formal context we can work with the canonical object-clarification instead.
This comes down to determining the Boolean attribute logic of contexts of the
form (U, X, Es), where U is a subset system over X. Adapted to the present
terminology, this means to ask for the class of all Boolean statements over X
that are true in the canonical interpretation of X' restricted to U. We speak of
the canonical Boolean theory (or Beo-theory) T, (U) associated with Y. In the
same vein, we define the canonical T-theory T.(U) of U with 7 ranging over the
other types of theories introduced above. By a complete 7-theory of U we mean
a 7-theory I' over X that is equivalent to T.(U), that is, I' C T, (U) and I'
entails T, (U).

It is easy to see that C o T is a closure operator on p(X). For let IT.(U) be
the set {¢ | P Es ¢ for every P € U} and let Qy(P) be {V¢ |¢ € D}, for & C 7[X].
Then T, = Qv o I, and the pair (II., C o Qy) is the Galois connection between
o(p(X)) and p(7][X]) induced by the satisfaction relation F5.* In particular, it
follows that if I' C I'V then C(I"") C C(I).

Suppose now that the subset systems that arise as information domains (i.e.,
as free extents) of T-theories are characterized by certain closure properties. Then
the closure operator C o T, takes an arbitrary subset system U to the closure
of U with respect to these properties. The information domains of implicational
theories, for instance, are known to be closed with respect to the intersection of
arbitrary subsets. Hence C(T7_ (U)) is the closure of U with respect to intersec-
tion, which essentially resembles Proposition 4. Proposition 3, on the other hand,
tells us that C(Tps_, (U)) = U, which means that there are no closure conditions
for the information domains of B, -theories. See Table 2 for the respective clo-
sure conditions for the other theory types. (‘Nonempty intersection’ is short for
‘intersection of nonempty subsets’.) Notice that the closure conditions given in
the table are not only necessary but also sufficient for a subset system to be the
information domain of a theory of the respective type.

4 This technicality concerning the universal quantifier is surely one the less attractive
features of the predicational viewpoint.



T H Closure properties of C(I") H Order-theoretic characterization

B none poset

Ho nonempty intersection bounded-complete poset

I intersection complete lattice

O subsets bounded-complete atomic poset
with completely coprime atoms

S intersection + union completely distributive
complete lattice

S,Oc || nonempty intersection
+ bounded union

Table 2. Relationship between theories and information domains for infinitary logic

The following example, which is adapted from [12], gives an illustration of
the various closure operations for a context over a finite set of attributes (where
we drop the index co).

Ezample 1. Let (U, X, E) be the formal context depicted by the cross table on
the left of Figure 1. The diagram on the right of the figure shows the system U of
object intents determined by the context. Let I" be the theory over {a,b,c,d, e}
consisting of the statements

d=c¢, c¢c=a, e<xaAb bAc=d,
che=A, anb=<cVe, V <aVb.

The information domain C(I") of I" coincides with the system of object intents
U, as the reader will easily check. In other words, I' is a complete Boolean
theory of U (and thus of the given context). Figure 2 provides an overview

{a,b,c,d} {a,b, e}
la|blc|d]e]
T1 || x| x X
T2 X
I3 X
Tq || x| x| x| X%
5 || X X
Te || X | x| x| x
27 || x X | x {a} {b}

Fig. 1. Formal context and induced system of object intents



of the information domains of several complete 7-theories of U, with varying
7. The top of the figure shows the information domain of a complete simple
implication theory of U; it is the closure of U with respect to intersection and
union. A (nonredundant) complete simple implication theory of U is given by
the statements d < ¢, ¢ < a, e = a, and e < b. The diagram below the top on
the left depicts the closure of U with respect to intersection of nonempty subsets
and union of bounded subsets. It is the information domain of the extension of
the above simple implication theory by the contradiction statement ¢ A e =< A.
Addition of the Horn statement b A ¢ < d further weakens the closure properties
of the associated information domain. If the statement b A ¢ < d is added to
the simple implication theory before the contradiction statement ¢ A e < A, the
resulting effect on the respective information domains is as depicted by the right
branch of Figure 2. Finally, adding the statements V' <aVband aAb=<cVe
leads to a I" and hence to U. ad

The last column of Table 2 gives an order-theoretic characterization of the
information domains of theories of the respective type. Consider, for instance, the
case of (infinitary) Horn theories. An ordered set (poset) is bounded-complete,
i.e., has suprema for all upwards-bounded subsets, just in case it has infima for
all nonempty subsets (see e.g. [4]). The down-set representation of this ordered
set as an ordered set of sets is therefore closed with respect to the intersection
of nonempty subsets. To give another example, take the implicational theories.
Their information domains coincide with the complete lattices of concept intents,
and every complete lattice is known to arise that way.

3 Finitary Logic

As mentioned in the introduction, it seems reasonable to assume that an ade-
quate representational framework for knowledge and information in mind and
machine is restricted to finitary “logical relationships”. Ganter and Wille, how-
ever, take infinitary compound attributes into account. The same is true of the
framework of Barwise and Seligman, who treat finitary theories only briefly
in passing [2, Sect. 9.2]. In contrast, [1,15] and especially [5] are devoted to
the study of the information domains of finitary theories, where theories are
typically represented as sets of sequents, also called sequent structures or non-
deterministic information systems.

In what follows, we apply the techniques developed in Section 2 to the study
of finitary attribute logic. In particular, we give a characterization of the infor-
mation domains of finitary Boolean theories.

3.1 Informations Domains of Finitary Theories

Given a set X of atomic predicates (or attributes) let B,,[X] be the set of com-
pound predicates over X that are inductively constructed by applying —, A,
and \/, where the operators A and \/ take only finite sets. A (finitary) Boolean
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Fig. 2. Information domain (free extent) of complete 7-theory of U with varying 7
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theory is a set of statements of the form V¢, with ¢ € B,[X]. All other defini-
tions from Section 2 carry over in a similar vein. In the following, let F always
be the canonical satisfaction relation Fs5, if not otherwise indicated. Recall that
a predicate is called positive (or affirmative) if is free of —. (Notice that A is
positive too.) It is easy to see that every positive predicate ¢ is persistent (or
increasing) in the sense that if P F ¢ and P C @ then Q F ¢, for all P,Q C X.

Information domains of finitary theories, in contrast to those of infinitary
ones, turn out to be (upwards and downwards) directed complete. A nonempty
system S of subsets of X' is called upwards directed if for all P,Q € S there is a
R € S with PUQ C R. A subset system S is called downwards directed if for
all P,QQ € S thereisan R € S with RC PNQ.

Lemma 1. Let S be subset system and ¢ a positive predicate over X.
(i) If S is upwards directed, then |US E ¢ iff P E ¢ for some P € S.
(i1) If S is downwards directed, then (\S E ¢ iff P E ¢ for every P € S.

Proof. (i) is straightforwardly proved by induction. Let us verify the induction
step for conjunction: by induction hypothesis, | JS E ¢ A9 iff for some elements
Pand Q of S, PFE ¢ and Q F v, that is, iff ¢ A1) is satisfied by some element of
S since S is upwards directed and ¢ A1) is persistent. As for (i) we can apply the
principle of duality to (i): If S is downwards directed then &' = {X¥'\ P| P € S}
is upwards directed and S = X'\ (JS'). Hence NS F ¢ iff JS' ¥ ¢4 iff, for
every P€ S, (¥ \ P)¥ ¢4, ie. PE ¢. a

Proposition 5. The information domain of a (finitary) Boolean theory is closed
with respect to the union of upwards directed subsets and with respect to the
intersection of downwards directed subsets.

Proof. Let I' be a theory over X and suppose S C C(I") is upwards directed.
Without loss of generality, we may assume that I" consists of statements of the
form ¢ = 1, with ¢, 1 positive. We need to show that (JS F (¢ < ¢). But if
US E ¢ then, by Lemma 1, P E ¢ for some P € S, hence P F v, and thus
US E . The closure of C(I") with respect to the intersection of downwards
directed sets follows in the same way by applying the principle of duality. a

The foregoing result is an instance of the general fact that all order-theoretic
properties of information domains of Boolean theories are invariant under (order-
theoretic) duality. For if ¢ is the information domain of a theory I' over X
then, by the principle of duality, {¥ \ P| P € U} is the information domain of
{-¢'|p eI}

The following two examples show that information domains of (finitary)
Boolean theories are not necessarily algebraic nor coherent, if algebraic (see
also [5]).

Ezample 2. Let I' be the theory over X' = {a1,as,...} with statements

an+1 2 ap, and a, X a1 Vapr (n>1).

11
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Fig. 3. Non-algebraic domain and non-coherent algebraic domain

The information domain C(I") is shown on the left of Figure 3, with A, =
{am |m < n} and B = {a, |n > 1}. This ordered set is not algebraic, because B
is neither compact nor the supremum of a directed set of compact elements.

Ezample 3. Suppose I is the theory over {a,b} U {co,c1,...} U{do,ds,...} that
consists of the statements

ahNb=cyVdy, cn=cpy1Vdur1, cnAdy =4 (n>0).

Then C(I') consists of @, A = {a}, B = {b}, C = {a,b} U {co,c1,c2,...},
and D,, = {a,b} U{co,c1,...,¢en-1,dn}, n > 0; see the diagram on the right
of Figure 3. Every element of C'(I") is compact, but the set of minimal upper
bounds of {A, B} is infinite; so C'(I") is not coherent.

3.2 Locally Closed Subset Systems

In this section, we present a characterization of the information domains of fini-
tary Boolean theories as subset systems. The key definition of a locally closed
system draws on an idea of Davey [3], who employs a similar concept to charac-
terize the (ordered) sets of prime ideals of distributive lattices.®

Definition 1 (Local membership/locally closed). Let U be a subset system
over X. A subset Q of X' is locally a member of U if for every finite subset I’ of
X there is an P € U such that QN F = PN F. The system U is locally closed
if it contains every subset of X which is locally a member of U.

Clearly, every subset system U over a finite set X is locally closed. For if @
is locally a member of U then, since X is finite, there is an element P of U such
that Q =QNX=PNX =P.

5 The reason that Davey’s work proves useful here is that the information domain of
a finitary Boolean theory I" over X' can be represented as the set of prime filters of
a distributive lattice, namely the quotient of the class of positive predicates over X
modulo equivalence with respect to I'; see e.g. [11, Chap. 6] for details.

12



Proposition 6. The information domain of a finitary Boolean theory is locally
closed.

Proof. Suppose Q C X is locally a member of C(I') and ¢ € I'. Since the set
F of all elements of X' occurring in ¢ is finite, there is a P € C(I") such that
PNF=QNF; hence Q F ¢. Tt follows that Q € C(I"). O

Ezxample 4. If X is infinite, there is no theory over X' with information domain
U = {{p} |p € X}. To see this, notice that & is locally a member U, since for every
finite subset F of X' there is a p € X such that p € F, that is, gNF = {p} N F.

In order to show that the property of being locally closed characterizes the
information domain of finitary Boolean theories, it remains to check that any
locally closed system U over X' is the information domain of some theory over
Y. This comes down to proving that U = C(T(U)), with T short for Tg,. From
Section 2, we know the following:

Lemma 2. If ¥ is finite then C(T(U)) =U.

Let U be a subset system over X and S a subset of X. The restriction U|s
of U to S is the subset system over S defined by U|s = {PN S|P eU}.

Lemma 3. If Q€ C(TU)) then QNS € C(TU|g)).

Proof. Suppose @ € C(T(U)) and ¢ € T(U|g). We need to show that QNS E ¢,
that is, Q F ¢, since ¢ is a predicate over S. But for the same reason ¢ belongs
to T(U). O

Proposition 7. If U is locally closed then C(T(U)) =U.

Proof. We need to show that C(T(U)) CU. Suppose Q € C(T(U)) and F is a
finite subset of X. Then, by Lemma 3, @ N F belongs to C(T(U|r)), and thus
to U|r, by Lemma 2. Hence Q € U, since U is locally closed. O

Together with Proposition 6, this give us the following characterization of
information domains of finitary Boolean theories:

Theorem 1. The information domain of a finitary Boolean theory over X is
locally closed and every locally closed subset system over X arises that way.

3.3 Theory Types and Closure Operators

As in Section 2.3, we get closure operators C o T, for the finitary versions B,,,
H,, I,, and O, of theory types. (Notice that simple implication theories are
finitary by definition since no conjunction or disjunction is involved.) Again,
if the subset systems that arise as information domains of 7-theories can be
characterized by closure conditions, then C(T-(Uf)) is the closure of U with
respect to these conditions.
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For 7 = B, Theorem 1 tells us that the information domain of a complete
finitary Boolean theory of U is the closure of U with respect to local membership.
Formulated in the language of Section 2.1, the free extent of the finitary Boolean
logic of a formal context is the closure of the system of object intents with respect
to local membership. (Compare this to Proposition 3.) Table 3 list the closure
properties that correspond to the various theory types. The proofs are fairly
straightforward and can be found, e.g., in [11, Chap. 3].

T H Closure properties of C(I") H Order-theoretic characterization
B, || local membership profinite poset
H. || nonempty intersection Scott domain (bounded-complete
+ directed union algebraic dcpo)
1, intersection + directed union complete algebraic lattice
O, || subsets + finitely bounded union bounded-complete atomic dcpo
with completely coprime atoms

Table 3. Relationship between theories and information domains for finitary logic

Table 3 also contains order-theoretic characterizations for the information
domains of the types of theories discussed so far. To the best of our knowledge,
no satisfying, purely order-theoretic characterization of the information domains
of finitary Boolean theories has been given up to now. A result worth mentioning
is that of Speed [13], which implies that an ordered set can be represented as an
information domain of a finitary theory just in case it is profinite, i.e., a projective
limit of a projective system of finite ordered sets. In addition to this somewhat
indirect characterization, Table 3 provides order-theoretic characterizations for
the information domains of Horn theories and their subtypes (see [11, Chap. 4]
for proofs and pointers to the literature).

Approximable Concepts For Formal Concept Analysis proper, the theory
type I, is of special interest. According to Table 3, the free extent of the finitary
implicational logic of a formal context is the closure of the system of object
intents with respect to the intersection of arbitrary subset and the union of
directed subsets. Furthermore, the resulting “concept lattice” is algebraic and
every complete algebraic lattice arises that way.

According to [8, pp. 33f], a concept lattice is algebraic just in case the system
U of concept intents consists precisely of those sets P C X of attributes with

(FH® C P for every finite subset F' of P. (1)
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The following fact, which is easily verified by unraveling definitions, sheds more
light on this condition:

pe (FH> iff (NF=<p) e T, MU).

So the above condition means that P is a concept intent iff P is in the free extent
of the finitary implicational logic of the context. Put differently, a concept lattice
1s algebraic just in case its implicational logic is finitary.

Zhang and Shen [16], who study formal contexts under the name of Chu
spaces, define an approximable concept as a set P C X of attributes that satisfies
condition (1).% According to what has just been said, the approximable concepts
are the elements of the free extent of the finitary implicational logic of the
context. This proves the following theorem of Zhang and Shen:

Proposition 8. The information domain of a complete (finitary) implicational
theory of a formal context consists of the approximable concepts of that context.

The lattice of approximable concepts is thus obtained from the system of object
intents by taking arbitrary intersections and directed unions.

4 Conclusion

The systematic approach to relate logical properties of theories to structural
properties the resulting information domains (or concept hierarchies) which has
been put forward in this papers may be further pursued in various directions.
To name just two of them, although considerable effort has been spent to char-
acterize “good” algebraic domains beyond Scott domains in terms of sequent
structures (see e.g. [5] or the work of G. Q. Zhang), a satisfying logical charac-
terization of the respective theories seems to be still missing. A second topic for
further research is to allow infinite disjunction while adhering to finite conjunc-
tion, which leads to the so-called observational or geometric logic (e.g. [14]).
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