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Abstract. One of the most elaborate approaches to specifying fornséss
and objects has been given by H. B. Curry. Although Curry isniigknown
as a proponent of the formalist viewpoint on mathematics,conception of a
formal system turns out to show constructivist and stradisiraspects as well.
In particular, Curry emphasizes that the exact nature ohematical objects is
irrelevant with respect to the truth of mathematical staets. This view is in
accordance with a Quinean conception of structuralism¢hvbdomes along with
a relative notion of ontology.

On the other hand, there is a crucial difference in attitueevben Curry and
Quine concerning their ontological commitments in speaogyformal objects;
for example, Curry regards inductively generated claséebjects as intuitively
given by means of inductive specifications, whereas Quistaats from drawing
on the intuitively given when it comes to ontology. This castfis closely related
to differing conceptions of logic. For Quine, in contras@orry, elementary logic
is an indispensable part of any serious science — includiegtience of formal
systems.
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2 RAINER OSSWALD

1 Introduction

By a formal object we mean things like numbers, strings,dsiplists,
trees, or the abstract data types used in computer scieheestarting
point of our discussion will be Haskell B. Curry’s view of foal objects.
Curry is generally considered to be the most prominent (ifthe only)
proponent of a formalist philosophy of mathematics in theogd half of
the twentieth century. Without doubt, Curry’s elaboratadrihe formal-
ist position is the most detailed one up to date. The standdedence
is his 1951 bookleOutlines of a Formalist Philosophy of Mathematics
[Cur51], which was already written in 1939n subsequent years, Curry
further developed and modified his approach, culminatedsri~bun-
dations of Mathematical LogifCur63], which we take as our primary
reference.

Curry’s formalist philosophy has its origins in the ideastad Hilbert
school, which he got acquainted with during a stay in Gggim® W. V.
Quine, on the other hand, is often associated with “logitisnhat he
stands in the tradition of Frege, Russell, and Carnap. Afghosuch a
classification may be more irritable than useful, it collsebints at the
central role of logic in Quine’s philosophy. He regards togs the gram-
mar of science, which includes of course the formal scieasesell. In
what follows, we will try to spell out the different positisrof Curry and
Quine with respect to logic and ontology and their consegegrton-
cerning the nature of formal objects.

2 Formal Systems and Objects

This section briefly introduces the basic notions of Curcgaception of
a formal system. A discussion of the underlying assumptiat$ollow
below when Curry’s approach is analyzed from a Quinean viewplf
not otherwise indicated, page numbers refer to [Cur63]imgaction.

! as an invited paper for an International Congress for theylbfi Science in the same year;
see [SH80, p. v].

2 He wrote his dissertatioGrundlagen der kombinatorischen Lodik929) under Hilbert, al-
though he did most of his work with Paul Bernays; cf. [SH8Wijd].
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2.1 Classes and Processes

Since Curry aims at foundations, he abstains from presupgasything
like axiomatic set theory, which he regards as a higher gdogac. Nev-
ertheless, in specifying formal systems he needs to refegrtain “total-
ities”:

We shall often have to formulate [...] properties (or rela) which define, in a strictly

intuitive (or contensive) way, a totality of elements ofipos. In order to distinguish such

intuitive totalities from the “sets” or “classes” formedéa (and conceived rather as objects
of some theoretical study than as intuitive notions), wel stadl them conceptual classes

(or relations). [p. 38]

A conceptual class is thus a totality of elements defined inetly intu-
itive or contensive way.Such a class is said to lefiniteif the question
of membership can be decided by an effective process.

An effective proces®r attaining a certain goal for a given element is
a sequence of transformations to be applied successivéietelement
such that the goal is reached after a finite number of stepp.(87). In
particular, one needs to know which elementsaaeissiblefor which
transformations and what the results of the latter will bentasting his
notion of an effective process with other constructivisigrams, like that
of the inuitionists, Curry states that his notion “does nepehd on any
idealistic intuition, temporal of otherwise.” Although ateal analysis
is postponed to later sections, we can at least note that dmlealistic
intuitions, his proposal heavily relies on non-idealistiees.

A conceptual class is calledductiveif it “is generated from cer-
tain initial elements by certain specified modes of comlamétp. 38].
More precisely, an inductive class is given byinitial andgenerating
specificationsThe initial specifications determine a definite clasgof
tial objects thebasisof X; the generating specifications define a definite
class ofmodes of combinatioaf finite degree, each of which when ap-
plied to a tuple of elements of produces an element of. In addition,
an inductive class is assumed to satisfy ¢lasure specificationwhich
says that “every element [of the class] can be reached byfeatigé pro-
cess [...] which starts with certain initial elements andaath later step
applies a mode of combination to arguments already cornstitifp. 39].

A constructionof an element of an inductive class is a process for
reaching that element by iterated application of the mode®mbina-
tion. An inductive class is callethonotectonigcif every element has a

3 ‘Contensive’ is Curry’s translation of ‘inhaltlich’.
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unique construction, angolytectoni¢ otherwise. The prototypical ex-
ample for the latter type is given by the inductive class otdistrings
over some alphabet, with concatenation of strings as tlggesiode of
combination.

2.2 Formal Systems

In short, a formal system is a theory about formal objédtre exactly,
aformal systenis given by a conceptual class fafrmal objectsa con-
ceptual class dbasic predicatesf finite degree, and a conceptual class
of elementary statementheelementary theorem#hich assert that cer-
tain basic predicates hold of certain formal objects [p. B0F system is
calleddeductiveif the class of theorems is inductive, in which case the
initial elements are referred to agiomsand the modes of combination
asdeductive rulegp. 46]. In case the class of basic predicates is empty,
Curry speaks of the formal system@ase morphology

Curry distinguishes betweeayntactical systemsndob system§pp.
51ff). In syntactical systems, the formal objects arefihi¢e stringsover
thelettersof somealphabet There are two principal ways of conceiving
these formal objects as an inductive class. The first optida use, for
each letter, theaffixation of that letter to the right as a (unary) mode
of combination, and the letters as initial elements. Thesdwption
employs concatenation as a single (binary) mode of combimathere
again the letters serve as initial elements. Notice thataftin leads
to a monotectonic inductive class whereas concatenaties gise to
a polytectonic one.

An ob systenis based on a monotectonic inductive class of formal
objects, callebbs the initial elements are calleatoms the modes of
combinationoperations Observe that an affixative syntactical system is
also an ob system. Since the focus of this paper is on formatt) we
are primarily interested in the “pure morphology” of ob g&mss. To give
a simple example, consider a single atorand a binary operatiof, ).
The obs are, (a,a), ((a,a),a), ({a,a), (a,a)), etc.

For an even simpler example take an atérand a unary operation
S. The resulting inductive class of formal objects, which sists of0,

S0, 550, 5550, and so on, can be employed as a basis for arithmetic. To

4 For a comparison of Curry’s notion of a formal system withesthdiscussed in the literature
see [Cur63, Sect. 2S].
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this end, consider the formal system consisting of thesgatgo-place
basic predicate-, the axiom0 = 0, and the deductive rule thatif= y
thenSz = Sy. Herex andy are unspecified obs, i.e., the rule is actually
aschemehat gives rise to infinitely many rules (cf. p. 55). Peanbisdt
axiom, for instance, which corresponds to the rule thatif= Sy then

x = y, is admissiblein the sense that adjoining it to the system does
not affect the class of elementary theorems [p. 256he rule is thus
anepitheorenof the system, i.e., a provable statement about elementary
statement8.Without going into details let us note that addition and mul-
tiplication can be introduced into the systemdsfinitional extensiofp.
107]. For a full account of this formal system as a basis fahenetic,

the reader is referred to [Sel75].

We close our brief exposition of formal systems by introdgcihe
notion of arepresentationwhich is essentially a structure preserving
one-to-one correspondence between the formal objectsarhaaf sys-
tem and certain objects “given from experienée”:

Any way of regarding the formal objects as specified objentsrgfrom experience will be
called arepresentatiorof the system, provided the contensive objects retain thietsire of
the formal objects. [...] It means that there is a separatteosive object for each formal
object, and [...] that the operations must be reflected ireseay as modes of combination
of the contensive objects. [...] Intechnical terms therstbe a one-to-one correspondence,
isomorphic with respect to the operations and modes of coatibn, between the formal
objects [...] and the contensive objects of the representat [p. 57]

For instance, the formal objects can be represented byrnheiesthat

are introduced by the specification of the formal systens ihicalled
the autonymougepresentation [p. 57]. So, every formal system has a
syntactical representation. Another example is@Gdelel representation
where each formal object is assigned its Godel number [p. G@ry
emphasizes that it is “possible to present a system withaunlp any
specific representation in mind” [ibid]. He calls such a sysabstract

5 Cft. also [Lor69].

6 Curry uses the prefix ‘epi-’ instead of the more common ‘mieta-

” For the sake of completeness, we should also mention Curogien of aninterpretationof
a formal system, which resembles to some degree the staodacepts of model theory; cf.
pp. 59f.
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3 Logic and Language

Let us now look more closely at Curry’s conception of logid @ontrast
it with Quine’s views on logic and language. Since Currydtie provide
mathematical logic with a foundation by means of formal sy, it is
not surprising that in his opinion his formalist approaclesioot hinge
on logic at all:

[...], from the standpoint of formalism [...] one can chdesize a mathematical system
objectively without presupposing anything which would lzéumal to call “logic”.
[Cur63, p. 18]

Presumably this does not incluggilosophical logi¢ which, according
to Curry, is concerned with the “principles of valid reasuaii [op cit,
p. 1]. For we may assume that he considers his reasoningtealid
However, it is hard to draw a line between philosophical syrdbolic
logic if the latter is taken as concerned with the regimeotednd formal-
ization of the logical structure of ordinary language argphinciples of
valid reasoning. According to Quine, “[t]he effect of thgimentation is
to reduce grammatical structure to logical structdaid “to paraphrase
a sentence of ordinary language into logical symbols isially to para-
phrase it into a special part still of ordinary or semi-oatdinlanguage®.
Since one of the main purposes of regimentation is to resshgguities
in ordinary language and thereby to increase conceptudthci@urry as
a scientist should welcome such a move — whether or not lbgycabols
are used instead of ordinary language expressions.
At least, Curry is quite aware of the importance of languagde-
scribing and communicating formal systems:
The construction of a formal system has to be explained imanmanicative language un-
derstood by both the speaker and the hearer. We call thisidgegtheU-language (the
language being used). [...] Itis well determined but nattigfixed; new locutions may be
introduced in it by way of definition, old locutions may be madore precise, etc. Every-
thing we do depends on the U-language; we can never trandicevithtever we study we
study by means of it. Of course, there is always vaguenessénhin the U-language; but we

can, by skillful use, obtain any degree of precision by a @ssof successive approximation.
[CF58, p. 25]

Although at first glance, Curry’s goal of a sufficiently prseilanguage
seems to be in accordance with Quine’s program of regimentahere

8 [Quig7, p. 158].
® [Qui6O, p. 159].
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is a big difference in attitude. For Quine, regimentatioramgereformu-
lation in a restricted language that allows a direct syn#amion within
the language of quantificational logic, because he regamsuiability
in that language more or less as equivalent to full intedligi. 1°

Curry, in contrast, does not give an explicit criterion oégision. For
instance, he regards the notions of effective process asd or totality
as sufficiently explicated in the form presented in Sectidnabove. In
particular, he does not address the question of ontologaraimitment,
which for Quine is intimately connected to properly anatggand regi-
menting the discourse in question.

Before we will take up this issue in more detail in Section, fef.us
dwell a bit on the status of logic and language in Quine’s a@icture
of scientific inquiry. Quine thinks of “logic as the grammérsarictly
scientific theory*' So, in a sense, language and logic are prerequisite
to science? But if language is regarded as essential for science — in-
cluding the science of formal systems — and if the languaggiéstion,
though ordinary, is regimented in certain ways, then itiisttaask for a
precise definition of that very language. At this point, aljpeon arises:
we cannot devise a theory of regimentation that meets Qusuéntific
standards without getting into an infinite regress.

The same problem is virulent when logical reasoning is atesin
his Methods of Logig¢as well as in other writings), Quine uses so-called
schematic letter@s a notational device for specifying logically valid
sentence and inference schemata. Schematic lettersp’sagd ‘¢’ in
‘p&q — p’, are to be treated as “placeholders” for expressions, $eme
tences, and not as variables ranging over the members of woinerse.
With Alex Orenstein we can question the status of these ptaders:

We are told that schematic letters [...] are neither obgogliage expressions nor metalin-

guistic variables. This is only a negative characterizatiod out of keeping with Quine’s

requirement for being precise. Worse still, the introdutibf schemas involves positing ad-

ditional types of expressions and additional rules deteirrgitheir wellformdness.
[Ore02, p. 116]

Quine might respond that schematic letters are a convebigrtis-
pensable device. He could refer us to his methodjwdisi-quotation

10 ¢t. e.g. [Qui60].

1 [Quio1, p. 219].

12 This observation has to be qualified insofar that Quine cmmsilogic a part of his holistic
web of beliefand thus open to revision, at least in principle.
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which allows to quantify over parts of expressions, and whscdefin-
able within a fully formalized theory of expressions, cdlfgotosyntax
as demonstrated in [Qui51, Chap. 7]. This response, howesebe crit-
icized on two grounds: First, any protosyntactical thedrgady makes
use of elementary logic. Second, defining concatenatiocgring of writ-
ing and inscriptions, as done in [Qui51, p. 288], is insuditifor pro-
tosyntax, as Quine himself points out, for example, in [Qai6p. 42],
where he proposes to employ finite sequences instead, wie@iséidn
in turn employs the natural numbérsSo, there can be no first theory
of regimentation and logical inference as a scientific theadyout the
expressions of a natural or formalized language.

The alternative is to take up an ontogenetic point of viewn@en-
dorses the assumption that “the basic laws of logic [.. . Jisternalized
in childhood, in acquiring the use of the logical particlest’, ‘and’,
‘or’, ‘'some’, ‘every’.”'* Learning elementary logic is thus on a par with
learning to master your mother-tongtre.

To sum up, for Quine, elementary logic (the principles ofd/aka-
soning) is an indispensable part of any serious scienceedder, he re-
gards regimentation into the (externalist) language afipege logic (his
canonical notation) as a strong requirement for full ingésility. On the
other hand, and Quine is everything but explicit on this p@lementary
logic cannot be described in a way meeting these standatdewtigiv-
ing rise to an infinite regress. This negative conclusiorukhnot be too
surprising since Quine repudiates first philosophy anyv&ayQuine’s
attitude is probably better seen as normative rather th&wuasiational.

Curry, in contrast, does not address the logical structandedying
his presentation of formal systems. He seems to take “threiptes of
valid reasoning” as obviou$.But there is every reason to make logical
structure and reasoning explicit in order to detect hiddesumptions
and to avoid errors. In the words of Donald Davidson: “By ppimg us
to decide on the logical form of sentences [the program ah#dizing a
natural language] can reveal our basic ontological comanits it can

13 Noticeably, Quine [Qui46] also espouses the idea of reduaiithmetic to protosyntax.

14 [Quigsa, p. 51].

15 But notice that logic, according to Quine and contra Carnapnot be learned by convention,
because conventionalism already presupposes languadeggaictf. [Qui76].

18 There are some exceptions; see, for instance, the preliynisearks about the logical con-
nectives in the context of epitheoretic reasoning; cf. B3upp. 96f].
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tell us where inferences are truly logical and where theynate and it
can reveal problems we had barely appreciatéd.”

4 Structure and Ontology

4.1 Ontological Commitment and Individuation

One of the hallmarks of Quine’s philosophy is “his insistempon be-

ing scrupulously clear and consistent about one’s ontofdgiommit-

ments.?® These commitments are manifest in (regimented) discourse:
We can very easily involve ourselves in ontological comneitts by saying, for example,
thatthere is somethin¢pound variable) [. . .] which is a prime number larger thanilion.

But this is, essentially, thenly way we can involve ourselves in ontological commitments:
by the use of bound variables. [Quibl, p. 12]

Hence the famous slogan “to be is to be the value of a boundbiari
Notice that this slogan only indicates how to reveal ontmalgcom-
mitments and not whether they are acceptable in discowmntsic or
otherwise:

We look to bound variables in connection with ontology nobider to know what there is,

but in order to know what a given remark or doctrine, ours onsone else’ssaysthere is;
and this much is quite properly a problem involving language [Quibl, pp. 15f]

For Quine, a necessary requirement for accepting an ontallagpm-
mitment is to be able to formulate criteria as to whether any of the
postulated entities are identical or not; in short: no gnithout identity.
For “[w]e cannot know what something is without knowing hawan be
marked off from other things. Identity is thus of a piece vatitology.*°
Intersubjective science is hardly possible if two scigatigould not be
able to make sure that they are talking about the same thing.

Let us reconsider the key notions underlying Curry’s detnivf for-
mal systems under this perspective; cf. Section 2.1 abaorst.d¥ all, he
commits himself to the existence obnceptual classeas “totalities of
elements defined in a strictly intuitive way.” So, when are ttenceptual
classesX andY identical? To say that they are identical if everybody has
the intuition that they are should surely not count as angetde crite-
rion. Happily, there is a rather straightforward altermatiX andY are

17 [Dav99, p. 715].
18 [Ore02, p. 24].
19 [Qui69a, p. 55].
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identical if they have the same elements, that is, withe' X’ for ‘ z
is an element ofX"’, if Vz(z € X < z € Y). In other words, concep-
tual classes are identical if they ar@extensiveCurry would presumably
agree. The more pressing problem is to pin down the condegasses
Curry commits himself to exist. His reference to a “strigtijuitive” way
of definition is of minor use to anybody lacking Curry’s irttans. More-
over, he agrees that (naive) intuition gives riseRiassell’s paradox®
Admittedly, Curry’s primary interest is imductiveclasses.

4.2 Inductive Constructions

Recall from Section 2.1 that an inductive class is genertated certain
initial elements by certain modes of combination. To induate classes,
one needs to individuate their elements. So we need to gitéty con-
ditions for the elements of an inductive class. Let us confine dis-
cussion to monotectonic classes. Then, by definition, temehts are
identical if and only if they have the same construction.sTleaves us
with identity conditions for processes that consist indted applications
of the modes of combination. We can take for granted that twdes
of combination are identical if they take the same argumtentise same
values; hence we can as well speakusfctionsor functional relationsn-
stead. But how to individuate processes of iterated apica of them?
Certainly, they are not meant to be processes in space aachttnmen-
tal processes of a particular person. Apparently, we arelbegly thrown
upon Curry’s appeal to intuitioft.

From a Quinean perspective, we better dispense with preseds
together and explicate the notion of iteration in the firgtcel Let us
assume for the moment the natural numbers as given. Thétethte of
a function or relation can be defined in termdinfte sequence® Con-
sider, for example, the monotectonic inductive class giwea classA of
initial elements and a single binary functigsuch thatf (x, y) = f(u,v)
only if x = w andy = v. Let g be the function that takes a given class
X to X U f(X x X). Thenzx is an element of the generated inductive
class if and only if there is a natural numbesuch that: € g"(A). As

21cure3, p. 4].

211t ijs worth mentioning that even Charles Parsons, who caséutuition a certain role in
grasping mathematical objects, is “inclined to deny thanevery simple inductive conclu-
sions are intuitive knowledge” [Par80, Sec. VIII].

22 See [Qui69bE14].
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for the ontological commitments underlying this explicati a careful
analysis shows that if we are only inclined to posit the gateel formal
objects and not the whole class of them, then the only pdstiteeeded
are the existence of the classgs 1, ..., n} andreplacemenbn them;
see [Qui69b] for detail§ In other words, by defining a formal object
we need to refer to the class of objects it is “built of”, whisha rather
modest assumption if anything is.

Of course, if the question is how to individuate natural nensbwe
should not take them as already individuated. Curry doesmate such
scruples, for he freely utilizes numbers and finite sequeirtis spec-
ification of inductive classes. Interestingly, when it cane explaining
his informal use of the natural numbers, Curry [Cur63, p. #2¢rs to
the following characterization:

Any system of objects, no matter what, which is generateah facertain initial object by a

certain unary operation in such a way that each newly gesematbject is distinct from all

those previously formed and that the process can be coudtindefinitely, will do as a set

of natural numbers. [Cur63, p. 12]
But this is essentially a specification of a monotectoniaicitve class,
with the notions of process and generation as unexplicaeder.

Quine [Qui69b, Chap. 1V] offers a definition of the naturahmaers
along the following lines: Take as anything you like, and take &sany
function such that(z) # 0, for everyz, andS(x) = S(y) only if z = y.
Thenz is a natural number if

VX(xe X&Vy(S(y) e X —ye X)—0¢eX).

Quine’s idea is that his “inverted” definition circumvenietneed of in-
finite classes because the outer variable is required teeranty over
finite sets — in contrast to the classical definition of thesale specifi-
cation by Frege, Dedekind, and Pe&fn order to make sure that there
are enough finite sets, we can follow von Neumann and défia®{}
andS(z) asx U {z}. Notice that assuming the existence of these sets in-
volves genuine ontological commitments since we are naymeosing
any axiomatic set theory. The existence of a natural nuniher hinges

on the existence of the class of all predecessors of that eumb

Zn particular, there is no need to postulate the existencth@funion or the product of
classes; for to say that € ¢(X) is just a convenient way of saying thate X Vv
yIz(ye X &z X &z = f(y,2)).

24 See also the discussion in [GV98, pp. 321f]. An alternatippraach within weak second-
order logic, with separate variables for finite sets, is pega by [FHO5].
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4.3 “The Ordered Pair as a Philosophical Paradigm”

Although the characterization of inductive constructigan important
issue for the science of formal systems, one can study theenaf for-
mal objects also by looking at such elementary construdisexdered
pair. In his presentation of formal systems, Curry does not roarar-
dered pairs at all. Quine, on the other hand, devotes a wiecleoa of
his Word and Objecto the ordered paf® To motivate that the notion of
an ordered pair calls for explication, Quine cites the folloy character-
ization by Peirce:

The Dyad is a mental Diagram consisting of two images of twjgab, one existentially

connected with one member of the pair, the other with therpthe one having attached

to it, as representing it, a Symbol whose meaning is “Fiet the other a Symbol whose
meaning is “Second®

Ordered pairs are in charge when binary relations are takelaases
(of ordered pairs). They are then typically used as valuesoébles of
quantification and are thus to be treated as entities. Asa@tiestion
what ordered pairs are, Quine points out that two orderes pai )
and (u,v) are identical if and only ift = v andy = v. This identity
condition is the only thing that matters when referring tdesed pairs.
In Word and ObjectQuine puts forward the slogan that “explication
elimination”, which means to systematically choose alyeatognized
objects as ordered pairs subject to the restriction that sagisfy the
identity condition. Since he aims at ontological econony,gdreferred
candidates are set theoretic constructs like Kuratows$ki'§z, y}}. For
him, “the question ‘What is an ordered pair?’ is dissolvedshpwing
how we can dispense with ordered pairs in any problematmesierfavor
of certain clearer notiong”

In later writings, Quine shifts emphasis more towards agimal rel-
ativity and indifference. The point is now not so much oneeafuction
or elimination but one of positing entities that satisfylsand such con-
ditions. In order “to affirm something about a pair, v), and to do so
without choosing any one of the various ways of constructirgered
pairs”2® Quine considers to employ the techniqueRafmsey sentences
A sentence about, v), say ‘P(u,v)’, is then replaced by

S

25 [Qui60, §53], from which the present section borrows its title.
2 cited after [Qui60, p. 257].

27TQui60, p. 260].

2 [Qui95a, p. 74]
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Af (VaVyVVw(fry = fyw < 2 = 2&y = w) & P(fuv)).

As Quine observes, “Ramsey’s treatment [. . .] brings outtiedninacy
of reference not by reinterpretation, but by waiving theichof interpre-
tation.” He furthermore observes that “each Ramsey seatisna fresh
existential quantification; consequently there is no asse of sameness
of objects from sentence to sentence”, which he sees ashiapratic in
the case of formal objects because “they can be happily dsadiafter
each application and introduced anew for the next.” We shaddl, how-
ever, that the existential quantification has to take scwge the whole
discourse of the application in question.

The ontological scrupulous might hesitate to posit funddian or-
der to cope with ordered paif$. A more modest solution could run as
follows: Take the locution ‘the order pair af andy’ as a definite de-
scription, i.e., if Fzyz’ stands for & is the ordered pair of and z’,
then y, z)" is short for ‘“zFzyz'. Now eliminate the definite descrip-
tion in favor of a uniqueness and an existence assumptioa.ekact
treatment of the latter is open to various options. Rusgallinstance,
regards the existence assumption as part of the sentenee cortsider-
ation, whereas Peano and Hilbert take it as a presuppasiitmough
these differences are of interest to our discussion, eslhetihe scope
considerations in the case of Russell’'s contextual dedimjtack of space
prevents us from going into details.

It is tempting to suggest that there is nothing more to sayatie
nature of ordered pairs than to require existence and unegseand the
condition that ordered pairs are identical only if their gmments are
identical. This view seems to be in full accordance with Eitts ax-
iomatic method. The question ‘What are ordered pairs?'d@a tmswered
by saying that ordered pairs are something we assume teexisb have
such and such identity conditions. Quine’s above arguntettthings
become clearer if ordered pairs are identified with setswady Kura-
towski’s representation, is not convincing. For what ans3&he only
legitimate answer can be: entities we assume to exist with and such
identity conditions.

2 Quine, in fact, speaks of an “unrealistic” assumption. Whetpresumably has in mind is
that functions are usually defined in terms of ordered pairsriples, etc). However, though
ordered pairs are technically useful to define relationsfandtions as sets of ordered pairs,
one can do without them, as already done sBrincipia Mathematica
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4.4 Structuralism

Structuralism is, as Charles Parsons puts it, “the view rbfgrence to
mathematical objects is always in the context of some backgt struc-
ture, and that the objects involved have no more to them tlaanbe
expressed in terms of the basic relations of the structfiiréhe slogan
is that formal objects are nothing but “positions” in stuwress.

Quine is a confessing structuralist — not only with respedbtmal
objects. He holds the view of a global structuralism, whistclosely
connected to his doctrine ohtological relativityor theinscrutability of
reference

[...]if we transform the range of objects of our science ig ane-to-one fashion, by rein-

terpreting our terms and predicates as applying to the ngecthinstead of the old ones,

the entire evidential support of our science will remainisngbed.

[...] there can be no evidence for one ontology as over agairather, so long anyway as

we can express a one-to-one correlation between them. Bagtrtcture and you save all.

[Qui92, p. 8]
For Quine, considerations of this sort “belong not to orgglbut to the
methodology of ontology, and thus to epistemolotjy.”

Michael Resnik, who is also inclined to prefer an epistemier-
pretation of structuralism, points out that one can adheeestructural-
ist ontology in mathematics without committing oneself taaogical
structuralism “all the way down”, i.e., without saying ttedk objects are
literally positions in structure¥. However, Resnik is only prepared to
accept an ontological reading of structuralism that pdpitsitions” as
objects but not the structures themselves.

The version of structuralism favored by Stewart Shapir@antrast,
treats structures as genuine objects. Shapiro mainta@s‘[tQuine’s]
thesis of inscrutability blocks the final ratification ofistturalism.®3 At
the same time, Shapiro is well aware of the epistemic linkvbeh on-
tology and language:

[...] grasping a structure and understanding the languéds theory amount to the same

thing. There is no more to understanding a structure anchpavie ability to refer to its

places than having an ability to use the language correctly. [Sha97, p. 137]
Quine could surely agree. But Shapiro seems to be after aotrta-
ogy which is independent of our epistemic grasp, wherea®itone, “to

%0 [Par90, p. 303].
811Quis1, p. 21].

32 See [Res97, Sect. 12.8].
%3 [Shag7, p. 141].
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ask what reality iseally like [...] apart from human categories, is self-
stultifying.”3*

Quine’s dictum that explication is elimination gives hisusturalism
an eliminativeconnotation. Explication of the natural number structure,
for instance, means for him to eliminate it in favor of any gnession,
preferably of set$®

| prefer to say with Benacerraf simply that there are no rmdtnumbers, and there is no
need of them, since whatever purposes we might have usedftinaran be served by any
progression, and set theory affords progressions in gaaexapply. [Qui98, p. 403]

Here, we can argue as in the case of ordered pairs that asithecin-
tological economy there is no reason not to grant naturalb&ussn(or
other formal objects) the same ontological status as sets.dan nev-
ertheless be scrupulous with respect to explicitly pogisitructures in
addition to positions in structures, whereas the unscoysumay em-
ploy the technique of Ramsey sentences as indicated in scugBion of
ordered pairs. Shapiro in essence takes the latter roatsgeiond order
logic and implicit definitions.

After this brief overview of structuralist positiori8 et us seek for
traces of structuralism in Curry’s formalist framework.adeding to the
above characterization of structuralism by Parsons, wd teaddress
the following two questions: does it make sense to refertméd objects,
i.e., to Curry’s obs, without having a formal system in backmd, and
is there more to a formal object than its relation to the otiigects of
the system?

The negative answer to the first question is immediate singeoh
belongs to an inductive class defined by some ob system. As &etond
question, recall that an ob is uniquely determined by itstroiction; in
fact, “an ob can be identified with [...] a construction, altiged, if you
will, by means of a tree diagram (or a normal constructiorusege).?”
An ob is thus fully characterized by two things: a certain moficombi-
nation and a certain tuple of obs, where the ob in questidreisdsult of
applying the mode of combination to the given tuple. Underrémanal-
ysis given in Section 4.2 this comes down to saying that arsdbliy

341Quig2, p. 9].

% See also [Qui69a, pp. 441].

36 |t should be noticed that there are further variants of stmatism: see, for instance, Geoffrey
Hellman’smodalstructuralism [Hel89].

87 [Cur63, p. 54].
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characterized by a certain functional relation the ob instjoa bears to
certain other obs of the system — and there is apparentlyngpthore to
say of an ob.

We can conclude that the structuralist viewpoint is weltedifor
inductive classes and hence for ob systéfnBurthermore notice that
Curry’s characterization of the natural numbers cited aboBection 4.2
cannot deny a rather strong structuralist flavor.

At the close of Section 2.2, we saw that for Curry, formal egst can
be abstractin that it is “possible to present a system without having any
specific representation in mind.” In spite of Curry’s relrte concern-
ing explicit ontological commitments, it is tempting to dethe foregoing
statement to the effect that formal systems or, better tthetsres deter-
mined by formal systems, are posited as genuine (abstrajets.

5 Conclusion

In sum, Curry’s position concerning the nature of formaleal$ appears
to be compatible with the basic assumptions of structurehsand thus
in some respect with a Quinean viewpoint. We can also conaems-
siderable agreement between Curry and Quine about the iamwer of
language in accessing formal objects.

There is a stark contrast between their attitudes towareisale of
logic and its relation to language. While Curry draws a sHamp be-
tween mathematical and philosophical logic, which goesi@lwith a
distinction between different levels of language, Quinefgns “the fic-
tion of an all-purpose scientific languag&with logic as its grammar.
For Quine, ontological commitments are intimately conaddb the log-
ical syntax of language, whereas Curry does not addressogiegtions
at all.

Curry aims at a foundation of mathematical logic on the basis
formal systems. What makes his approach particularly exsterg to the
study of formal objects is his departure from Hilbert in thatdoes not
restrict himself to syntactical systems. All in all, it migte worthwhile
to continue the reanalysis of Curry’s approach to formakoty under
a Quinean perspective — as sketched in this essay — therzlyimg its
constructivist appeal without falling back on the intugy given.

38 Cf. also the discussion in [Sha97, Chap. 6] on structuritistpretations of constructivism.
%9 1Quigl, p. 243]



References
[CF58]
[Cur51]
[Cur63]

[Dav99]

[FHO5]

[GV98]

[Hel89]
[Lor69]

[Ore02]
[Par80]

[Par90]
[Qui46]
[Qui51]

[Qui60]
[Qui61]

[Qui69a]

[Qui69b]

[Qui76]

[Quigl]
[Quig7]

[Qui9l]
[Qui92]

[Qui95a]

[Quig5b]

Haskell B. Curry and Robert FeySombinatory Logicvolume 1. North-
Holland, Amsterdam, 1958.

Haskell B. Curry. Outlines of a Formalist Philosophy of Mathematics
North-Holland, Amsterdam, 1951.

Haskell B. Curry. Foundations of Mathematical LogicMcGraw-Hill,
New York, 1963.

Donald Davidson. Reply to Ernie Lepore. In Lewis Hawahn, editor,
The Philosophy of Donald Davidsphhe Library of Living Philosophers,
Volume XXVII, pages 715-717. Open Court, Chicago, IL, 1999.
Solomon Feferman and Geoffrey Hellman. Predicatiwendations of
arithmetic.Journal of Philosophical Logic24:1-17, 1995.

Alexander George and Daniel J. Velleman. Two coniosgt of natural
numbers. In Garth Dale and Gianluigi Oliveri, editofsuth in Mathe-
matics pages 311-327, Oxford, 1998. Oxford University Press.
Geoffrey Hellman. Mathematics without NumbersOxford University
Press, Oxford, 1989.

Paul Lorenzen. Einfilhrung in die operative Logik und Mathematik
Springer, Berlin, 2nd edition, 1969.

Alex OrensteinW. V. Quine Acumen, Chesham, UK, 2002.

Charles Parsons. Mathematical intuiti®moceedings of the Aristotelian
Society 80:145-168, 1979-1980.

Charles Parsons. The structuralist view of mathieadabjects Synthese
84:303-346, 1990.

W. V. Quine. Concatenation as a basis for arithmédtidQuine [Qui95b],
pages 70-82.

W. V. Quine.Mathematical Logic Harvard University Press, Cambridge,
MA, 2nd edition, 1951.

W. V. Quine.Word and ObjectMIT Press, Cambridge, MA, 1960.

W. V. Quine. On what there is. IRrom a Logical Point of Viewpages
1-19. Harvard University Press, Cambridge, MA, 2nd ed;jti®61.

W. V. Quine. Ontological relativity. I@ntological Relativity and Other
Essayspages 26—68. Columbia University Press, New York, 1969.

W. V. Quine. Set Theory and its LogicHarvard University Press, Cam-
bridge, MA, 2nd edition, 1969.

W. V. Quine. Carnap on logical truth. Tthe Ways of Paradox and Other
Essayspages 107-132. Harvard University Press, Cambridge, M4, 2
edition, 1976.

W. V. Quine. Things and their places in theoriesTheories and Things
pages 1-23. Harvard University Press, Cambridge, MA, 1981.

W. V. Quine.Quiddities: An Intermittently Philosophical Dictionariar-
vard University Press, Cambridge, MA, 1987.

W. V. Quine. Immanence and validity. In Quine [Quif}5pages 242—-250.
W. V. Quine. Structure and naturelournal of Philosophy89(1):5-9,
1992.

W. V. Quine.From Stimulus to SciencéHarvard University Press, Cam-
bridge, MA, 1995.

W. V. Quine. Selected Logic PapersHarvard University Press, Cam-
bridge, MA, 2nd edition, 1995.



[Quiog]

[Qui01]

[Res97]

[Sel75]

[SH80]

[Sha97]

W. V. Quine. Reply to Charles Parsons. In Lewis Edwiahn and
Paul Arthur Schilpp, editorsThe Philosophy of W. V. Quin&he Li-
brary of Living Philosophers, Volume XVIII, pages 396—4@pen Court,
Chicago, IL, 2nd edition, 1998.

W. V. Quine. Confessions of a confirmed extensiatali In Juliet
Floyd and Sanford Shieh, editois ture Pasts: The Analytic Tradition in
Twentieth-Century Philosophpages 215-221. Oxford University Press,
Oxford, 2001.

Michael D. ResnikMathematics as a Science of Patterr@xford Uni-
versity Press, Oxford, 1997.

Jonathan P. Seldin. Arithmetic as a study of forngatems.Notre Dame
Journal of Formal Logi¢c16(4):449-464, 1975.

Jonathan P. Seldin and J. Roger Hindley. A short bipgy of
Haskell B. Curry. InTo H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalismpages vii—xi. Academic Press, London,
1980.

Stewart ShapiroPhilosophy of MathematicsOxford University Press,
Oxford, 1997.



