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Abstract. One of the most elaborate approaches to specifying formal systems
and objects has been given by H. B. Curry. Although Curry is mainly known
as a proponent of the formalist viewpoint on mathematics, his conception of a
formal system turns out to show constructivist and structuralist aspects as well.
In particular, Curry emphasizes that the exact nature of mathematical objects is
irrelevant with respect to the truth of mathematical statements. This view is in
accordance with a Quinean conception of structuralism, which comes along with
a relative notion of ontology.

On the other hand, there is a crucial difference in attitude between Curry and
Quine concerning their ontological commitments in specifying formal objects;
for example, Curry regards inductively generated classes of objects as intuitively
given by means of inductive specifications, whereas Quine abstains from drawing
on the intuitively given when it comes to ontology. This conflict is closely related
to differing conceptions of logic. For Quine, in contrast toCurry, elementary logic
is an indispensable part of any serious science – including the science of formal
systems.
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2 RAINER OSSWALD

1 Introduction

By a formal object we mean things like numbers, strings, tuples, lists,
trees, or the abstract data types used in computer science. The starting
point of our discussion will be Haskell B. Curry’s view of formal objects.
Curry is generally considered to be the most prominent (if not the only)
proponent of a formalist philosophy of mathematics in the second half of
the twentieth century. Without doubt, Curry’s elaborationof the formal-
ist position is the most detailed one up to date. The standardreference
is his 1951 bookletOutlines of a Formalist Philosophy of Mathematics
[Cur51], which was already written in 1939.1 In subsequent years, Curry
further developed and modified his approach, culminated in his Foun-
dations of Mathematical Logic[Cur63], which we take as our primary
reference.

Curry’s formalist philosophy has its origins in the ideas ofthe Hilbert
school, which he got acquainted with during a stay in Göttingen.2 W. V.
Quine, on the other hand, is often associated with “logicism” in that he
stands in the tradition of Frege, Russell, and Carnap. Although such a
classification may be more irritable than useful, it correctly hints at the
central role of logic in Quine’s philosophy. He regards logic as the gram-
mar of science, which includes of course the formal sciencesas well. In
what follows, we will try to spell out the different positions of Curry and
Quine with respect to logic and ontology and their consequences con-
cerning the nature of formal objects.

2 Formal Systems and Objects

This section briefly introduces the basic notions of Curry’sconception of
a formal system. A discussion of the underlying assumptionswill follow
below when Curry’s approach is analyzed from a Quinean viewpoint. If
not otherwise indicated, page numbers refer to [Cur63] in this section.

1 as an invited paper for an International Congress for the Unity of Science in the same year;
see [SH80, p. v].

2 He wrote his dissertationGrundlagen der kombinatorischen Logik(1929) under Hilbert, al-
though he did most of his work with Paul Bernays; cf. [SH80, p.viii].
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2.1 Classes and Processes

Since Curry aims at foundations, he abstains from presupposing anything
like axiomatic set theory, which he regards as a higher part of logic. Nev-
ertheless, in specifying formal systems he needs to refer tocertain “total-
ities”:

We shall often have to formulate [. . . ] properties (or relations) which define, in a strictly
intuitive (or contensive) way, a totality of elements of notions. In order to distinguish such
intuitive totalities from the “sets” or “classes” formed later (and conceived rather as objects
of some theoretical study than as intuitive notions), we shall call them conceptual classes
(or relations). [p. 38]

A conceptual class is thus a totality of elements defined in a strictly intu-
itive or contensive way.3 Such a class is said to bedefiniteif the question
of membership can be decided by an effective process.

An effective processfor attaining a certain goal for a given element is
a sequence of transformations to be applied successively tothe element
such that the goal is reached after a finite number of steps (cf. p. 37). In
particular, one needs to know which elements areadmissiblefor which
transformations and what the results of the latter will be. Contrasting his
notion of an effective process with other constructivist programs, like that
of the inuitionists, Curry states that his notion “does not depend on any
idealistic intuition, temporal of otherwise.” Although a critical analysis
is postponed to later sections, we can at least note that if not on idealistic
intuitions, his proposal heavily relies on non-idealisticones.

A conceptual class is calledinductive if it “is generated from cer-
tain initial elements by certain specified modes of combination” [p. 38].
More precisely, an inductive classX is given byinitial andgenerating
specifications. The initial specifications determine a definite class ofini-
tial objects, thebasisof X; the generating specifications define a definite
class ofmodes of combinationof finite degree, each of which when ap-
plied to a tuple of elements ofX produces an element ofX. In addition,
an inductive class is assumed to satisfy theclosure specification, which
says that “every element [of the class] can be reached by an effective pro-
cess [. . . ] which starts with certain initial elements and ateach later step
applies a mode of combination to arguments already constructed” [p. 39].

A constructionof an element of an inductive class is a process for
reaching that element by iterated application of the modes of combina-
tion. An inductive class is calledmonotectonic, if every element has a

3 ‘Contensive’ is Curry’s translation of ‘inhaltlich’.
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unique construction, andpolytectonic, otherwise. The prototypical ex-
ample for the latter type is given by the inductive class of finite strings
over some alphabet, with concatenation of strings as the single mode of
combination.

2.2 Formal Systems

In short, a formal system is a theory about formal objects.4 More exactly,
a formal systemis given by a conceptual class offormal objects, a con-
ceptual class ofbasic predicatesof finite degree, and a conceptual class
of elementary statements, theelementary theorems, which assert that cer-
tain basic predicates hold of certain formal objects [p. 50]. The system is
calleddeductive, if the class of theorems is inductive, in which case the
initial elements are referred to asaxiomsand the modes of combination
asdeductive rules[p. 46]. In case the class of basic predicates is empty,
Curry speaks of the formal system aspure morphology.

Curry distinguishes betweensyntactical systemsandob systems(pp.
51ff). In syntactical systems, the formal objects are thefinite stringsover
the lettersof somealphabet. There are two principal ways of conceiving
these formal objects as an inductive class. The first option is to use, for
each letter, theaffixation of that letter to the right as a (unary) mode
of combination, and the letters as initial elements. The second option
employs concatenation as a single (binary) mode of combination, where
again the letters serve as initial elements. Notice that affixation leads
to a monotectonic inductive class whereas concatenation gives rise to
a polytectonic one.

An ob systemis based on a monotectonic inductive class of formal
objects, calledobs; the initial elements are calledatoms, the modes of
combinationoperations. Observe that an affixative syntactical system is
also an ob system. Since the focus of this paper is on formal objects, we
are primarily interested in the “pure morphology” of ob systems. To give
a simple example, consider a single atoma and a binary operation〈 , 〉.
The obs area, 〈a, a〉, 〈〈a, a〉, a〉, 〈〈a, a〉, 〈a, a〉〉, etc.

For an even simpler example take an atom0 and a unary operation
S. The resulting inductive class of formal objects, which consists of0,
S0, SS0, SSS0, and so on, can be employed as a basis for arithmetic. To

4 For a comparison of Curry’s notion of a formal system with others discussed in the literature
see [Cur63, Sect. 2S].
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this end, consider the formal system consisting of these obs, a two-place
basic predicate=, the axiom0 = 0, and the deductive rule that ifx = y

thenSx = Sy. Herex andy are unspecified obs, i.e., the rule is actually
a schemethat gives rise to infinitely many rules (cf. p. 55). Peano’s third
axiom, for instance, which corresponds to the rule that ifSx = Sy then
x = y, is admissiblein the sense that adjoining it to the system does
not affect the class of elementary theorems [p. 256].5 The rule is thus
anepitheoremof the system, i.e., a provable statement about elementary
statements.6 Without going into details let us note that addition and mul-
tiplication can be introduced into the system bydefinitional extension[p.
107]. For a full account of this formal system as a basis for arithmetic,
the reader is referred to [Sel75].

We close our brief exposition of formal systems by introducing the
notion of a representation, which is essentially a structure preserving
one-to-one correspondence between the formal objects of a formal sys-
tem and certain objects “given from experience”:7

Any way of regarding the formal objects as specified objects given from experience will be
called arepresentationof the system, provided the contensive objects retain the structure of
the formal objects. [. . . ] It means that there is a separate contensive object for each formal
object, and [. . . ] that the operations must be reflected in some way as modes of combination
of the contensive objects. [. . . ] In technical terms there must be a one-to-one correspondence,
isomorphic with respect to the operations and modes of combination, between the formal
objects [. . . ] and the contensive objects of the representation. [p. 57]

For instance, the formal objects can be represented by theirnamesthat
are introduced by the specification of the formal system; this is called
the autonymousrepresentation [p. 57]. So, every formal system has a
syntactical representation. Another example is theGödel representation,
where each formal object is assigned its Gödel number [p. 58]. Curry
emphasizes that it is “possible to present a system without having any
specific representation in mind” [ibid]. He calls such a systemabstract.

5 Cf. also [Lor69].
6 Curry uses the prefix ‘epi-’ instead of the more common ‘meta-’.
7 For the sake of completeness, we should also mention Curry’snotion of aninterpretationof

a formal system, which resembles to some degree the standardconcepts of model theory; cf.
pp. 59f.
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3 Logic and Language

Let us now look more closely at Curry’s conception of logic and contrast
it with Quine’s views on logic and language. Since Curry tries to provide
mathematical logic with a foundation by means of formal systems, it is
not surprising that in his opinion his formalist approach does not hinge
on logic at all:

[. . . ], from the standpoint of formalism [. . . ] one can characterize a mathematical system
objectively without presupposing anything which would be natural to call “logic”.

[Cur63, p. 18]

Presumably this does not includephilosophical logic, which, according
to Curry, is concerned with the “principles of valid reasoning” [op cit,
p. 1]. For we may assume that he considers his reasoning validtoo.

However, it is hard to draw a line between philosophical andsymbolic
logic if the latter is taken as concerned with the regimentation and formal-
ization of the logical structure of ordinary language and the principles of
valid reasoning. According to Quine, “[t]he effect of the regimentation is
to reduce grammatical structure to logical structure”8 and “to paraphrase
a sentence of ordinary language into logical symbols is virtually to para-
phrase it into a special part still of ordinary or semi-ordinary language”.9

Since one of the main purposes of regimentation is to resolveambiguities
in ordinary language and thereby to increase conceptual clarity, Curry as
a scientist should welcome such a move – whether or not logical symbols
are used instead of ordinary language expressions.

At least, Curry is quite aware of the importance of language in de-
scribing and communicating formal systems:

The construction of a formal system has to be explained in a communicative language un-
derstood by both the speaker and the hearer. We call this language theU-language(the
language being used). [. . . ] It is well determined but not rigidly fixed; new locutions may be
introduced in it by way of definition, old locutions may be made more precise, etc. Every-
thing we do depends on the U-language; we can never transcendit; whatever we study we
study by means of it. Of course, there is always vagueness inherent in the U-language; but we
can, by skillful use, obtain any degree of precision by a process of successive approximation.

[CF58, p. 25]

Although at first glance, Curry’s goal of a sufficiently precise language
seems to be in accordance with Quine’s program of regimentation, there

8 [Qui87, p. 158].
9 [Qui60, p. 159].
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is a big difference in attitude. For Quine, regimentation means reformu-
lation in a restricted language that allows a direct symbolization within
the language of quantificational logic, because he regards formulability
in that language more or less as equivalent to full intelligibility.10

Curry, in contrast, does not give an explicit criterion of precision. For
instance, he regards the notions of effective process and class or totality
as sufficiently explicated in the form presented in Section 2.1 above. In
particular, he does not address the question of ontologicalcommitment,
which for Quine is intimately connected to properly analyzing and regi-
menting the discourse in question.

Before we will take up this issue in more detail in Section 4.1, let us
dwell a bit on the status of logic and language in Quine’s overall picture
of scientific inquiry. Quine thinks of “logic as the grammar of strictly
scientific theory.”11 So, in a sense, language and logic are prerequisite
to science.12 But if language is regarded as essential for science – in-
cluding the science of formal systems – and if the language inquestion,
though ordinary, is regimented in certain ways, then it is fair to ask for a
precise definition of that very language. At this point, a problem arises:
we cannot devise a theory of regimentation that meets Quine’s scientific
standards without getting into an infinite regress.

The same problem is virulent when logical reasoning is at issue. In
his Methods of Logic(as well as in other writings), Quine uses so-called
schematic lettersas a notational device for specifying logically valid
sentence and inference schemata. Schematic letters, say ‘p’ and ‘q’ in
‘p&q → p’, are to be treated as “placeholders” for expressions, heresen-
tences, and not as variables ranging over the members of someuniverse.
With Alex Orenstein we can question the status of these placeholders:

We are told that schematic letters [. . . ] are neither object language expressions nor metalin-
guistic variables. This is only a negative characterization and out of keeping with Quine’s
requirement for being precise. Worse still, the introduction of schemas involves positing ad-
ditional types of expressions and additional rules determining their wellformdness.

[Ore02, p. 116]

Quine might respond that schematic letters are a convenientbut dis-
pensable device. He could refer us to his method ofquasi-quotation,

10 Cf. e.g. [Qui60].
11 [Qui01, p. 219].
12 This observation has to be qualified insofar that Quine considers logic a part of his holistic

web of beliefand thus open to revision, at least in principle.
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which allows to quantify over parts of expressions, and which is defin-
able within a fully formalized theory of expressions, called protosyntax,
as demonstrated in [Qui51, Chap. 7]. This response, however, can be crit-
icized on two grounds: First, any protosyntactical theory already makes
use of elementary logic. Second, defining concatenation in terms of writ-
ing and inscriptions, as done in [Qui51, p. 288], is insufficient for pro-
tosyntax, as Quine himself points out, for example, in [Qui69a, p. 42],
where he proposes to employ finite sequences instead, whose definition
in turn employs the natural numbers.13 So, there can be no first theory
of regimentation and logical inference as a scientific theory about the
expressions of a natural or formalized language.

The alternative is to take up an ontogenetic point of view. Quine en-
dorses the assumption that “the basic laws of logic [. . . ] areinternalized
in childhood, in acquiring the use of the logical particles ‘not’, ‘and’,
‘or’, ‘some’, ‘every’.”14 Learning elementary logic is thus on a par with
learning to master your mother-tongue.15

To sum up, for Quine, elementary logic (the principles of valid rea-
soning) is an indispensable part of any serious science. Moreover, he re-
gards regimentation into the (externalist) language of predicate logic (his
canonical notation) as a strong requirement for full intelligibility. On the
other hand, and Quine is everything but explicit on this point, elementary
logic cannot be described in a way meeting these standards without giv-
ing rise to an infinite regress. This negative conclusion should not be too
surprising since Quine repudiates first philosophy anyway.So Quine’s
attitude is probably better seen as normative rather than asfoundational.

Curry, in contrast, does not address the logical structure underlying
his presentation of formal systems. He seems to take “the principles of
valid reasoning” as obvious.16 But there is every reason to make logical
structure and reasoning explicit in order to detect hidden assumptions
and to avoid errors. In the words of Donald Davidson: “By prompting us
to decide on the logical form of sentences [the program of formalizing a
natural language] can reveal our basic ontological commitments, it can

13 Noticeably, Quine [Qui46] also espouses the idea of reducing arithmetic to protosyntax.
14 [Qui95a, p. 51].
15 But notice that logic, according to Quine and contra Carnap,cannot be learned by convention,

because conventionalism already presupposes language andlogic; cf. [Qui76].
16 There are some exceptions; see, for instance, the preliminary remarks about the logical con-

nectives in the context of epitheoretic reasoning; cf. [Cur63, pp. 96f].
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tell us where inferences are truly logical and where they arenot, and it
can reveal problems we had barely appreciated.”17

4 Structure and Ontology

4.1 Ontological Commitment and Individuation

One of the hallmarks of Quine’s philosophy is “his insistence upon be-
ing scrupulously clear and consistent about one’s ontological commit-
ments.”18 These commitments are manifest in (regimented) discourse:

We can very easily involve ourselves in ontological commitments by saying, for example,
thatthere is something(bound variable) [. . . ] which is a prime number larger than a million.
But this is, essentially, theonly way we can involve ourselves in ontological commitments:
by the use of bound variables. [Qui61, p. 12]

Hence the famous slogan “to be is to be the value of a bound variable.”
Notice that this slogan only indicates how to reveal ontological com-
mitments and not whether they are acceptable in discourse, scientific or
otherwise:

We look to bound variables in connection with ontology not inorder to know what there is,
but in order to know what a given remark or doctrine, ours or someone else’s,saysthere is;
and this much is quite properly a problem involving language. [Qui61, pp. 15f]

For Quine, a necessary requirement for accepting an ontological com-
mitment is to be able to formulate criteria as to whether any two of the
postulated entities are identical or not; in short: no entity without identity.
For “[w]e cannot know what something is without knowing how it can be
marked off from other things. Identity is thus of a piece withontology.”19

Intersubjective science is hardly possible if two scientists would not be
able to make sure that they are talking about the same thing.

Let us reconsider the key notions underlying Curry’s definition of for-
mal systems under this perspective; cf. Section 2.1 above. First of all, he
commits himself to the existence ofconceptual classesas “totalities of
elements defined in a strictly intuitive way.” So, when are two conceptual
classesX andY identical? To say that they are identical if everybody has
the intuition that they are should surely not count as an acceptable crite-
rion. Happily, there is a rather straightforward alternative: X andY are

17 [Dav99, p. 715].
18 [Ore02, p. 24].
19 [Qui69a, p. 55].
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identical if they have the same elements, that is, with ‘x ∈ X ’ for ‘ x
is an element ofX ’, if ∀x(x ∈ X ↔ x ∈ Y ). In other words, concep-
tual classes are identical if they arecoextensive. Curry would presumably
agree. The more pressing problem is to pin down the conceptual classes
Curry commits himself to exist. His reference to a “strictlyintuitive” way
of definition is of minor use to anybody lacking Curry’s intuitions. More-
over, he agrees that (naive) intuition gives rise toRussell’s paradox.20

Admittedly, Curry’s primary interest is ininductiveclasses.

4.2 Inductive Constructions

Recall from Section 2.1 that an inductive class is generatedfrom certain
initial elements by certain modes of combination. To individuate classes,
one needs to individuate their elements. So we need to state identity con-
ditions for the elements of an inductive class. Let us confineour dis-
cussion to monotectonic classes. Then, by definition, two elements are
identical if and only if they have the same construction. This leaves us
with identity conditions for processes that consist in iterated applications
of the modes of combination. We can take for granted that two modes
of combination are identical if they take the same argumentsto the same
values; hence we can as well speak offunctionsor functional relationsin-
stead. But how to individuate processes of iterated applications of them?
Certainly, they are not meant to be processes in space and time nor men-
tal processes of a particular person. Apparently, we are hopelessly thrown
upon Curry’s appeal to intuition.21

From a Quinean perspective, we better dispense with processes al-
together and explicate the notion of iteration in the first place. Let us
assume for the moment the natural numbers as given. Then theiterateof
a function or relation can be defined in terms offinite sequences.22 Con-
sider, for example, the monotectonic inductive class givenby a classA of
initial elements and a single binary functionf such thatf(x, y) = f(u, v)
only if x = u andy = v. Let g be the function that takes a given class
X to X ∪ f(X × X). Thenx is an element of the generated inductive
class if and only if there is a natural numbern such thatx ∈ gn(A). As

20 [Cur63, p. 4].
21 It is worth mentioning that even Charles Parsons, who concedes intuition a certain role in

grasping mathematical objects, is “inclined to deny that even very simple inductive conclu-
sions are intuitive knowledge” [Par80, Sec. VIII].

22 See [Qui69b,§14].
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for the ontological commitments underlying this explication, a careful
analysis shows that if we are only inclined to posit the generated formal
objects and not the whole class of them, then the only postulates needed
are the existence of the classes{0, 1, . . . , n} andreplacementon them;
see [Qui69b] for details.23 In other words, by defining a formal object
we need to refer to the class of objects it is “built of”, whichis a rather
modest assumption if anything is.

Of course, if the question is how to individuate natural numbers we
should not take them as already individuated. Curry does notshare such
scruples, for he freely utilizes numbers and finite sequences in his spec-
ification of inductive classes. Interestingly, when it comes to explaining
his informal use of the natural numbers, Curry [Cur63, p. 42]refers to
the following characterization:

Any system of objects, no matter what, which is generated from a certain initial object by a
certain unary operation in such a way that each newly generated object is distinct from all
those previously formed and that the process can be continued indefinitely, will do as a set
of natural numbers. [Cur63, p. 12]

But this is essentially a specification of a monotectonic inductive class,
with the notions of process and generation as unexplicated as ever.

Quine [Qui69b, Chap. IV] offers a definition of the natural numbers
along the following lines: Take0 as anything you like, and take asS any
function such thatS(x) 6= 0, for everyx, andS(x) = S(y) only if x = y.
Thenx is a natural number if

∀X(x ∈ X & ∀y(S(y) ∈ X → y ∈ X) → 0 ∈ X).

Quine’s idea is that his “inverted” definition circumvents the need of in-
finite classes because the outer variable is required to range only over
finite sets – in contrast to the classical definition of the closure specifi-
cation by Frege, Dedekind, and Peano.24 In order to make sure that there
are enough finite sets, we can follow von Neumann and define0 as{}
andS(x) asx∪ {x}. Notice that assuming the existence of these sets in-
volves genuine ontological commitments since we are not presupposing
any axiomatic set theory. The existence of a natural number thus hinges
on the existence of the class of all predecessors of that number.

23 In particular, there is no need to postulate the existence ofthe union or the product of
classes; for to say thatx ∈ g(X) is just a convenient way of saying thatx ∈ X ∨

∃y∃z(y ∈ X & z ∈ X & x = f(y, z)).
24 See also the discussion in [GV98, pp. 321f]. An alternative approach within weak second-

order logic, with separate variables for finite sets, is proposed by [FH95].
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4.3 “The Ordered Pair as a Philosophical Paradigm”

Although the characterization of inductive constructionsis an important
issue for the science of formal systems, one can study the nature of for-
mal objects also by looking at such elementary constructs astheordered
pair. In his presentation of formal systems, Curry does not mention or-
dered pairs at all. Quine, on the other hand, devotes a whole section of
his Word and Objectto the ordered pair.25 To motivate that the notion of
an ordered pair calls for explication, Quine cites the following character-
ization by Peirce:

The Dyad is a mental Diagram consisting of two images of two objects, one existentially
connected with one member of the pair, the other with the other; the one having attached
to it, as representing it, a Symbol whose meaning is “First”,and the other a Symbol whose
meaning is “Second”.26

Ordered pairs are in charge when binary relations are taken as classes
(of ordered pairs). They are then typically used as values ofvariables of
quantification and are thus to be treated as entities. As to the question
what ordered pairs are, Quine points out that two ordered pairs 〈x, y〉
and 〈u, v〉 are identical if and only ifx = u andy = v. This identity
condition is the only thing that matters when referring to ordered pairs.
In Word and Object, Quine puts forward the slogan that “explication is
elimination”, which means to systematically choose already-recognized
objects as ordered pairs subject to the restriction that they satisfy the
identity condition. Since he aims at ontological economy, his preferred
candidates are set theoretic constructs like Kuratowski’s{x, {x, y}}. For
him, “the question ‘What is an ordered pair?’ is dissolved byshowing
how we can dispense with ordered pairs in any problematic sense in favor
of certain clearer notions.”27

In later writings, Quine shifts emphasis more towards ontological rel-
ativity and indifference. The point is now not so much one of reduction
or elimination but one of positing entities that satisfy such and such con-
ditions. In order “to affirm something about a pair〈u, v〉, and to do so
without choosing any one of the various ways of constructingordered
pairs”,28 Quine considers to employ the technique ofRamsey sentences.
A sentence about〈u, v〉, say ‘P 〈u, v〉’, is then replaced by

25 [Qui60,§53], from which the present section borrows its title.
26 cited after [Qui60, p. 257].
27 [Qui60, p. 260].
28 [Qui95a, p. 74]
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∃f(∀x∀y∀z∀w(fxy = fyw ↔ x = z & y = w) & P (fuv)).

As Quine observes, “Ramsey’s treatment [. . . ] brings out indeterminacy
of reference not by reinterpretation, but by waiving the choice of interpre-
tation.” He furthermore observes that “each Ramsey sentence is a fresh
existential quantification; consequently there is no assurance of sameness
of objects from sentence to sentence”, which he sees as unproblematic in
the case of formal objects because “they can be happily dismissed after
each application and introduced anew for the next.” We should add, how-
ever, that the existential quantification has to take scope over the whole
discourse of the application in question.

The ontological scrupulous might hesitate to posit functions in or-
der to cope with ordered pairs.29 A more modest solution could run as
follows: Take the locution ‘the order pair ofx andy’ as a definite de-
scription, i.e., if ‘Fxyz’ stands for ‘x is the ordered pair ofy and z’,
then ‘〈y, z〉’ is short for ‘ιxFxyz’. Now eliminate the definite descrip-
tion in favor of a uniqueness and an existence assumption. The exact
treatment of the latter is open to various options. Russell,for instance,
regards the existence assumption as part of the sentence under consider-
ation, whereas Peano and Hilbert take it as a presupposition. Although
these differences are of interest to our discussion, especially the scope
considerations in the case of Russell’s contextual definition, lack of space
prevents us from going into details.

It is tempting to suggest that there is nothing more to say about the
nature of ordered pairs than to require existence and uniqueness and the
condition that ordered pairs are identical only if their components are
identical. This view seems to be in full accordance with Hilbert’s ax-
iomatic method. The question ‘What are ordered pairs?’ is then answered
by saying that ordered pairs are something we assume to existand to have
such and such identity conditions. Quine’s above argument that things
become clearer if ordered pairs are identified with sets, saywith Kura-
towski’s representation, is not convincing. For what are sets? The only
legitimate answer can be: entities we assume to exist with such and such
identity conditions.

29 Quine, in fact, speaks of an “unrealistic” assumption. Whathe presumably has in mind is
that functions are usually defined in terms of ordered pairs (or triples, etc). However, though
ordered pairs are technically useful to define relations andfunctions as sets of ordered pairs,
one can do without them, as already done so inPrincipia Mathematica.
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4.4 Structuralism

Structuralism is, as Charles Parsons puts it, “the view thatreference to
mathematical objects is always in the context of some background struc-
ture, and that the objects involved have no more to them than can be
expressed in terms of the basic relations of the structure”.30 The slogan
is that formal objects are nothing but “positions” in structures.

Quine is a confessing structuralist – not only with respect to formal
objects. He holds the view of a global structuralism, which is closely
connected to his doctrine ofontological relativityor theinscrutability of
reference:

[. . . ] if we transform the range of objects of our science in any one-to-one fashion, by rein-
terpreting our terms and predicates as applying to the new objects instead of the old ones,
the entire evidential support of our science will remain undisturbed.
[. . . ] there can be no evidence for one ontology as over against another, so long anyway as
we can express a one-to-one correlation between them. Save the structure and you save all.

[Qui92, p. 8]

For Quine, considerations of this sort “belong not to ontology but to the
methodology of ontology, and thus to epistemology.”31

Michael Resnik, who is also inclined to prefer an epistemic inter-
pretation of structuralism, points out that one can adhere to a structural-
ist ontology in mathematics without committing oneself to ontological
structuralism “all the way down”, i.e., without saying thatall objects are
literally positions in structures.32 However, Resnik is only prepared to
accept an ontological reading of structuralism that posits“positions” as
objects but not the structures themselves.

The version of structuralism favored by Stewart Shapiro, incontrast,
treats structures as genuine objects. Shapiro maintains that “[Quine’s]
thesis of inscrutability blocks the final ratification of structuralism.”33 At
the same time, Shapiro is well aware of the epistemic link between on-
tology and language:

[. . . ] grasping a structure and understanding the language of its theory amount to the same
thing. There is no more to understanding a structure and having the ability to refer to its
places than having an ability to use the language correctly. [Sha97, p. 137]

Quine could surely agree. But Shapiro seems to be after a trueontol-
ogy which is independent of our epistemic grasp, whereas forQuine, “to

30 [Par90, p. 303].
31 [Qui81, p. 21].
32 See [Res97, Sect. 12.8].
33 [Sha97, p. 141].
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ask what reality isreally like [. . . ] apart from human categories, is self-
stultifying.”34

Quine’s dictum that explication is elimination gives his structuralism
aneliminativeconnotation. Explication of the natural number structure,
for instance, means for him to eliminate it in favor of any progression,
preferably of sets:35

I prefer to say with Benacerraf simply that there are no natural numbers, and there is no
need of them, since whatever purposes we might have used themfor can be served by any
progression, and set theory affords progressions in generous supply. [Qui98, p. 403]

Here, we can argue as in the case of ordered pairs that aside from on-
tological economy there is no reason not to grant natural numbers (or
other formal objects) the same ontological status as sets. One can nev-
ertheless be scrupulous with respect to explicitly positing structures in
addition to positions in structures, whereas the unscrupulous may em-
ploy the technique of Ramsey sentences as indicated in our discussion of
ordered pairs. Shapiro in essence takes the latter route, via second order
logic and implicit definitions.

After this brief overview of structuralist positions,36 let us seek for
traces of structuralism in Curry’s formalist framework. According to the
above characterization of structuralism by Parsons, we need to address
the following two questions: does it make sense to refer to formal objects,
i.e., to Curry’s obs, without having a formal system in background, and
is there more to a formal object than its relation to the otherobjects of
the system?

The negative answer to the first question is immediate since any ob
belongs to an inductive class defined by some ob system. As to the second
question, recall that an ob is uniquely determined by its construction; in
fact, “an ob can be identified with [. . . ] a construction, objectified, if you
will, by means of a tree diagram (or a normal construction sequence).”37

An ob is thus fully characterized by two things: a certain mode of combi-
nation and a certain tuple of obs, where the ob in question is the result of
applying the mode of combination to the given tuple. Under the reanal-
ysis given in Section 4.2 this comes down to saying that an ob is fully

34 [Qui92, p. 9].
35 See also [Qui69a, pp. 44f].
36 It should be noticed that there are further variants of structuralism; see, for instance, Geoffrey

Hellman’smodalstructuralism [Hel89].
37 [Cur63, p. 54].
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characterized by a certain functional relation the ob in question bears to
certain other obs of the system – and there is apparently nothing more to
say of an ob.

We can conclude that the structuralist viewpoint is well suited for
inductive classes and hence for ob systems.38 Furthermore notice that
Curry’s characterization of the natural numbers cited above in Section 4.2
cannot deny a rather strong structuralist flavor.

At the close of Section 2.2, we saw that for Curry, formal systems can
beabstractin that it is “possible to present a system without having any
specific representation in mind.” In spite of Curry’s reluctance concern-
ing explicit ontological commitments, it is tempting to read the foregoing
statement to the effect that formal systems or, better, the structures deter-
mined by formal systems, are posited as genuine (abstract) objects.

5 Conclusion

In sum, Curry’s position concerning the nature of formal objects appears
to be compatible with the basic assumptions of structuralism – and thus
in some respect with a Quinean viewpoint. We can also concedea con-
siderable agreement between Curry and Quine about the importance of
language in accessing formal objects.

There is a stark contrast between their attitudes towards the role of
logic and its relation to language. While Curry draws a sharpline be-
tween mathematical and philosophical logic, which goes along with a
distinction between different levels of language, Quine prefers “the fic-
tion of an all-purpose scientific language”,39 with logic as its grammar.
For Quine, ontological commitments are intimately connected to the log-
ical syntax of language, whereas Curry does not address suchquestions
at all.

Curry aims at a foundation of mathematical logic on the basisof
formal systems. What makes his approach particularly interesting to the
study of formal objects is his departure from Hilbert in thathe does not
restrict himself to syntactical systems. All in all, it might be worthwhile
to continue the reanalysis of Curry’s approach to formal objects under
a Quinean perspective – as sketched in this essay – thereby retaining its
constructivist appeal without falling back on the intuitively given.

38 Cf. also the discussion in [Sha97, Chap. 6] on structuralistinterpretations of constructivism.
39 [Qui91, p. 243]
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